检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新芸 袁克海 唐加山[1] 温勇[1] Wang Xinyun;Yuan Kehai;Tang Jiashan;Wen Yong(College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210000,China)
出 处:《统计与决策》2024年第10期46-51,共6页Statistics & Decision
基 金:国家自然科学基金资助项目(31971029)。
摘 要:目前主要有两种结构方程模型(SEM):CB-SEM和PLS-SEM。当样本量较小时,CB-SEM常常会出现不收敛的情况,使用岭方法可以改善这个问题。文章主要研究将岭方法运用到PLS-SEM中,对比岭方法下PLS-SEM与CB-SEM的表现。研究表明,岭CB-SEM和岭PLS-SEM估计量总体上比常规的CB-SEM和PLS-SEM估计量更精确,但偏差没有明显改善;当样本量较小时,PLS-SEM、岭PLS-SEM估计的精确性都优于CB-SEM、岭CB-SEM;对于受到中介变量影响的内生潜变量来说,岭PLS-SEM在估计其他潜变量对它的影响(路径系数)时最精确。There are two main structural equation modeling:CB-SEM(covariance-based SEM)and PLS-SEM(partial least squares SEM).When the sample size is small,the CB-SEM method often fails to converge,which can be improved by using ridge method.This paper mainly studies the application of ridge method to PLS-SEM,and compares the performance of PLS-SEM and CB-SEM under ridge method.The research shows that CB-SEM and PLS-SEM estimators are generally more accurate than con-ventional CB-SEM and PLS-SEM estimators,but the bias has not been significantly improved.The estimation accuracy of PLS-SEM and ridge PLS-SEM is better than that of CB-SEM and ridge CB-SEM under small samples.For endogenous latent variables affected by intermediate variables,ridge PLS-SEM is the most accurate in estimating the influence(path coefficient)of other latent variables.
关 键 词:结构方程模型 岭方法 岭CB-SEM PLS-SEM 蒙特卡洛模拟
分 类 号:F064.1[经济管理—政治经济学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222