检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴悔 陈旭 景永俊[1] 王叔洋[2] WU Hui;CHEN Xu;JING Yongjun;WANG Shuyang(School of Computer Science and Engineering,North Minzu University,Yinchuan 750000;School of Electrical and Information Engineering,North Minzu University,Yinchuan 750000)
机构地区:[1]北方民族大学计算机科学与工程学院,银川750000 [2]北方民族大学电气信息工程学院,银川750000
出 处:《北京大学学报(自然科学版)》2024年第3期403-412,共10页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:北方民族大学中央高校基本科研业务费专项资金(2022PT_S04);宁夏回族自治区重点研发项目(2023BDE02017)资助。
摘 要:在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分。为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wavelet Neural Network,MFA-SGWNN),将流量的属性特征与空间特征相结合,能有效地捕获隐藏的感染主机流量特征,增强僵尸网络节点的特征表示,同时规避了数据样本不平衡和恶意加密流量对检测的影响。在ISCX2014僵尸网络数据集和CIC-IDS 2017(僵尸网络)数据集上的实验结果表明,MFA-SGWNN检测效果优于现有方法,具有更强的鲁棒性和泛化能力。In botnet attacks,because the characteristics of disguised botnet traffic data are too similar to normal traffic data,it is difficult to distinguish them accurately by traditional detection methods.In order to solve this problem,this paper proposes a Multi-feature Aggregation Spectral Graph Wavelet Neural Network(MFA-SGWNN).This method combines the attribute and spatial features of traffic,which can effectively capture the hidden characteristics of infected host traffic,enhance the feature representation of botnet nodes,and avoid the influence of unbalanced data samples and malicious encrypted traffic on detection.Experimental results on the ISCX2014 botnet and CIC-IDS 2017(botnet)datasets show that MFA-SGWNN outperforms existing methods and has stronger robustness and generalization ability.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP393.08[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.101.186