检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Zi DING Jiu WANG Yu-wen
机构地区:[1]School of Mathematics Sciences,Harbin Normal University,Harbin 150025,China [2]School of Mathematics and Natural Sciences,The University of Southern Mississippi,Hattiesburg MS 39406-5043,USA [3]Academic Committee,Harbin Institute of Petroleum,Harbin 150027,China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2024年第2期363-369,共7页高校应用数学学报(英文版)(B辑)
基 金:Supported by the National Natural Science Foundation of China(12001142).
摘 要:Let X be a Banach space and let P:X→X be a bounded linear operator.Using an algebraic inequality on the spectrum of P,we give a new sufficient condition that guarantees the existence of(I-P)^(-1) as a bounded linear operator on X,and a bound on its spectral radius is also obtained.This generalizes the classic Banach lemma.We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
关 键 词:Banach lemma spectral radius generalized inverse perturbation analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.25.60