A generalization of Banach's lemma and its applications to perturbations of bounded linear operators  

在线阅读下载全文

作  者:WANG Zi DING Jiu WANG Yu-wen 

机构地区:[1]School of Mathematics Sciences,Harbin Normal University,Harbin 150025,China [2]School of Mathematics and Natural Sciences,The University of Southern Mississippi,Hattiesburg MS 39406-5043,USA [3]Academic Committee,Harbin Institute of Petroleum,Harbin 150027,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2024年第2期363-369,共7页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(12001142).

摘  要:Let X be a Banach space and let P:X→X be a bounded linear operator.Using an algebraic inequality on the spectrum of P,we give a new sufficient condition that guarantees the existence of(I-P)^(-1) as a bounded linear operator on X,and a bound on its spectral radius is also obtained.This generalizes the classic Banach lemma.We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.

关 键 词:Banach lemma spectral radius generalized inverse perturbation analysis 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象