检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵乐 郑重 王新奕 费泽松[1] ZHAO Le;ZHENG Zhong;WANG Xinyi;FEI Zesong(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]北京理工大学信息与电子学院,北京100081
出 处:《无线电通信技术》2024年第3期503-509,共7页Radio Communications Technology
基 金:国家自然科学基金(U20B2039)。
摘 要:面向新一代无线通信的技术革新,无人机(Unmanned Aerial Vehicle,UAV)在未来通信系统中的应用越来越不可忽视。考虑传统波束管理(Beam Management,BM)方法在高动态、高频段空地链路中波束对准的高额开销,设计了一种基于人工智能(Artificial Intelligence,AI)技术的BM方案。方案基于长短时记忆(Long-Short Term Memory,LSTM)网络模型,利用深度学习(Deep Learning,DL)方法实现基站(Base Station,BS)-UAV通信过程中的BM。以参考信号接收功率(Reference Signal Receive Power,RSRP)为性能指标对BM方案进行评估,基于BM历史经验数据将UAV终端轨迹划分为数个区域,训练特定的区域模型以更好地适应各区域中的信道传播环境特征。在模型部署阶段,根据区域划分结果按区域切换模型,实现基于模型切换的区域化AI-BM(Model Switching based Area-Specific AI-BM,MSAS AI-BM)。仿真结果表明,所提的MSAS AI-BM方案相比传统的简单穷举BM方案能够极大降低系统开销,拥有良好的RSRP保持性能。Innovative technology for the next generation of wireless communication makes the application of Unmanned Aerial Vehicle(UAV)in future communication systems increasingly indispensable.Considering the high overhead of beam alignment in high-dynamic,high-frequency air to ground links with traditional Beam Management(BM)methods,an Artificial Intelligence(AI)based BM scheme is designed.This scheme is based on Long-Short Term Memory(LSTM)network models and utilizes Deep Learning(DL)methods to achieve BM in the Base Station(BS)-UAV communication process.The BM scheme is evaluated using Reference Signal Receive Power(RSRP)as the performance metric.Based on historical experience data,the UAV terminal trajectory is divided into several zones,and specific zone models are trained to better adapt to environmental features in each zone.In the model deployment stage,models are switched according to the zone division results,achieving Model Switching based Area-Specific AI-BM(MSAS AI-BM).Simulation results demonstrate that the proposed MSAS AI-BM scheme significantly reduces system overhead compared to traditional BM schemes with simple enumeration and exhibits excellent RSRP retention performance.
关 键 词:波束管理 人工智能 参考信号接收功率 长短时记忆 模型切换
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7