检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段鹏松[1] 刁宪广 张大龙 曹仰杰[1] 刘广怡 孔金生[1] DUAN Pengsong;DIAO Xianguang;ZHANG Dalong;CAO Yangjie;LIU Guangyi;KONG Jinsheng(School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China;People’s Liberation Army Strategic Support Force Information Engineering University,Zhengzhou 450001,China)
机构地区:[1]郑州大学网络空间安全学院,郑州450002 [2]解放军战略支援部队信息大学,郑州450001
出 处:《计算机科学》2024年第S01期751-758,共8页Computer Science
基 金:郑州市协同创新重大专项(20XTZX06013);中国工程科技发展战略河南研究院战略咨询研究项目(2022HENYB03);河南省科技攻关项目(232102210050)。
摘 要:老人在卫生间内的跌倒行为存在因救助及时性差而导致严重危害的风险,因此高效快捷的如厕跌倒监测研究具有重要意义。针对当前基于Wi-Fi感知的跌倒监测方法中存在的受噪声影响大而特征提取不充分、监测精度有限的问题,提出了一种基于多级离散小波变换和软阈值处理的信号降噪算法,及一种融合卷积神经网络、双向长短期记忆网络及自注意力机制的非接触式如厕跌倒监测模型WiCare。首先,从原始CSI数据中提取振幅作为基础数据;其次,使用多级离散小波变换和软阈值处理进行感知数据降噪;然后,将感知数据进行多维重构,以更准确地表征跌倒行为特征;最后,利用WiCare提取感知数据中的有效特征,进而实现卫生间如厕跌倒行为监测功能。实验结果表明,WiCare在居家卫生间环境下对跌倒行为监测的准确率为99.41%,与其他同类模型相比,WiCare的识别准确率高,模型复杂度低,且泛化能力更强。The fall down behavior of elderly people in the bathroom poses a risk of serious harm due to poor timely rescue.Therefore,efficient and rapid monitoring of fall down in toilet is of great significance.A non-contact fall down in toiletmonitoring model WiCare,which integrates convolutional neural network(CNN),Bi-directional long short-term memory(BiLSTM),and self-attention mechanism,is proposed to address the issues of insufficient feature extraction and limited monitoring accuracy in current fall monitoring methods based on Wi-Fi perception,which are greatly affected by noise.Firstly,the amplitude is extracted from the original CSI data as the basic data.Secondly,multi-level discrete wavelet transform and soft threshold processing are used to reduce perceived data noise.Then,the perceptual data is reconstructed in multiple dimensions to more accurately characterize the characteristics of fall behavior.Finally,WiCare is used to extract effective features in the perception data,and then realize the function of monitoring toilet fall behavior in the toilet.Experimental results show that the accuracy of WiCare in monitoring fall behavior in the home bathroom environment is 99.41%.Compared with other similar models,WiCare has high recognition accuracy,low model complexity,and stronger generalization ability.
关 键 词:Wi-Fi感知 如厕跌倒监测 离散小波变换 软阈值处理 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28