检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晨卓 鲁艳蓉 沈剑 WANG Chenzhuo;LU Yanrong;SHEN Jian(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China;School of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China;School of Informatics Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China)
机构地区:[1]中国民航大学计算机科学与技术学院,天津300300 [2]中国民航大学安全科学与工程学院,天津300300 [3]浙江理工大学信息科学与工程学院,杭州310018
出 处:《计算机科学》2024年第S01期1002-1010,共9页Computer Science
基 金:国家重点研发计划(2023YFB4302901,2023YFB2703700);国家自然科学基金(61802276,62172418,U2133205,U21A20465);天津市教委科研计划项目(2021KJ038);浙江理工大学科学基金项目(22222266Y)。
摘 要:现有的指纹识别方法大多是基于机器学习,在对海量数据集中训练时忽视了数据本身的隐私性和异质性,从而导致用户信息泄漏和识别率降低。为在隐私保护下协同优化模型精度,提出了一个全新的基于联邦学习的指纹识别算法(Federated Learning-Fingerprint Recognition,Fed-FR)。首先,通过联邦学习迭代聚合来自各终端的参数,从而提高全局模型的性能;其次,将稀疏表示理论用于低质量指纹图像去噪处理,来增强指纹的纹理结构;再次,针对客户端异构而导致的分配不公问题,提出基于水库抽样的客户端调度策略;最后,在3个真实数据集上进行仿真实验,对Fed-FR的有效性进行对比分析。实验结果表明,Fed-FR精度比局部学习提高5.32%,比联邦平均算法提高8.56%,接近于集中学习的精度;在隐私保护水平、评估准确率及可扩展性等方面具有良好的表现。研究成果首次展现了联邦学习与指纹识别结合的可行性,增强了指纹识别算法的安全性和可扩展性,给联邦学习应用于生物识别技术提供了参考。Most existing fingerprint recognition methods rely on machine learning,which neglects the privacy and heterogeneity of the data when training on massive databases,resulting in user information leakage and reduced recognition accuracy.To cooperatively optimize model accuracy under privacy protection,this paper proposes a novel fingerprint recognition algorithm based on federated learning,termed federated learning-fingerprint recognition(Fed-FR).Firstly,the algorithm iteratively aggregates parameters from each terminal through federated learning,thereby improving the performance of the global model.Secondly,sparse representation theory is applied to low-quality fingerprint image denoising to enhance the texture structure of the fingerprint.Thirdly,in response to the allocation inequity issue caused by client heterogeneity,this paper proposes a client scheduling strategy based on reservoir sampling.Finally,experimental results on three real-world databases show that Fed-FR significantly outperforms local learning by 5.32%and federated average by 8.56%,approaching the accuracy of centralized learning.The results demonstrate the effectiveness of Fed-FR in privacy protection,accuracy evaluation,and scalability.This study demonstrates for the first time the feasibility of combining federated learning with fingerprint recognition,enhancing the security and scalability of fingerprint recognition algorithms,and providing a reference for the application of federated learning in biometric technologies.
关 键 词:指纹识别 联邦学习 稀疏表示 水库抽样 隐私保护
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.37.16