基于知识及流利度提升的中文语法纠错模型  

在线阅读下载全文

作  者:王岩 梁椰玲 WANG Yan;LIANG Yeling

机构地区:[1]郑州科技学院信息工程学院,河南郑州450064

出  处:《信息技术与信息化》2024年第5期107-110,共4页Information Technology and Informatization

摘  要:语法错误纠正(grammatical error correction,GEC)旨在将包含语法错误的句子纠正为正确的句子。目前语法错误纠正研究主要基于Transformer模型,但由于模型参数规模大,中文GEC任务语料不足,Transformer无法得到充分训练来学习文本中足够的语义信息。提出了基于知识及流利度提升策略的中文GEC模型,将MacBERT预训练模型作为外部知识来源,并利用流利度提升策略缓解GEC模型单轮推理纠错不完全的局限。为了验证所提出的GEC模型的有效性,在NLPCC 2018中文GEC共享任务数据集上进行了大量实验,其性能优于NLPCC 2018 GEC共享任务中开发的最佳模型。

关 键 词:中文语法纠错 Transformer模型 知识增强学习 流利度提升策略 预训练语言模型 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象