检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘增录 LIU Zenglu(Department of Radiology,Zouping Central Hospital,Binzhou,Shandong 256212,China)
出 处:《影像研究与医学应用》2024年第9期25-27,共3页Journal of Imaging Research and Medical Applications
摘 要:目的:基于临床及对比增强乳腺X线摄影技术,构建乳腺良恶性病变评价模型。方法:选取2021年1月—2022年12月邹平市中心医院收治的乳腺良恶性病变患者380例为研究对象,其中恶性病变151例纳入恶性组,良性病变229例纳入良性组,比较两组临床资料,对比增强乳腺X线摄影技术相关指标,分析乳腺恶性病变影响因素,构建乳腺良恶性病变评价模型。结果:经Logistic分析,病灶最大径≥2 cm、病灶固定、强化类型(Ⅱ型强化)、强化类型(Ⅲ型强化)、强化程度(重度)、强化方式(不均匀)、征象(分叶)、大导管征为乳腺恶性的危险因素(P<0.05);Hosmer-Lemeshow检验显示,χ^(2)=0.694,P=1.000,模型拟合优度较好。结论:基于临床及对比增强乳腺X线摄影技术构建的鉴别乳腺良恶性病变的评价模型效果较好,能够为乳腺良恶性病变的鉴别诊断提供参考。Objective Based on clinical and contrast-enhanced mammography,construct an evaluation model for benign and malignant breast lesions.Methods Selected 380 patients with benign and malignant breast lesions admitted to Zouping Central Hospital from November 2021 to December 2022,151 cases of malignant lesions were included in the malignant group,and 229 cases of benign lesions were included in the benign group.We compared the clinical data of the two groups,compared the relevant indicators of contrast-enhanced mammography,analyzed the risk factors of breast gland malignant lesions,and constructed an evaluation model for benign and malignant breast lesions.Results After logistic analysis,the maximum diameter of the lesion≥2 cm,lesion fixation,enhancement type(type II enhancement),enhancement type(type III enhancement),enhancement degree(severe),enhancement mode(uneven),signs(lobulation),and large duct sign were risk factors for breast malignancy(P<0.05).The 2 Hosmer-Lemeshow test showed that:χ^(2)=0.694,P=1.000,the model has good goodness of fit.Conclusion The evaluation model for distinguishing benign and malignant breast lesions based on clinical and contrast-enhanced mammography is effective and can provide reference for the differential diagnosis of benign and malignant breast lesions.
关 键 词:乳腺病变 对比增强乳腺X线摄影技术 模型 诊断
分 类 号:R445.4[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38