高炉炼铁过程智能感知、诊断与控制方法的研究现状与展望  

Research status and prospects of intelligent sensing, diagnosis and control method of blast furnace ironmaking processes

在线阅读下载全文

作  者:安剑奇 郭云鹏 张新民 杜胜 黄元峰 吴敏 AN Jianqi;GUO Yunpeng;ZHANG Xinmin;DU Sheng;HUANG Yuanfeng;WU Min(School of Automation,China University of Geosciences,Wuhan 430074,China;Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems,Wuhan 430074,China;Engineering Research Center of Intelligent Technology for Geo-Exploration,Ministry of Education,Wuhan 430074,China;College of Control Science and Engineering,Zhejiang University,Hangzhou 310058,China;State Key Laboratory of Industrial Control Technology,Hangzhou 310027,China)

机构地区:[1]中国地质大学(武汉)自动化学院,湖北武汉430074 [2]复杂系统先进控制与智能自动化湖北省重点实验室,湖北武汉430074 [3]地球探测智能化技术教育部工程研究中心,湖北武汉430074 [4]浙江大学控制科学与工程学院,浙江杭州310058 [5]工业控制技术国家重点实验室,浙江杭州310027

出  处:《冶金自动化》2024年第2期2-23,共22页Metallurgical Industry Automation

基  金:国家自然科学基金面上项目(62373336,61973287);湖北省自然科学基金青年项目(2022CFB582);高等学校学科创新引智计划项目(B17040)。

摘  要:随着“双碳”政策的推进,对钢铁行业中主要能源消耗环节——高炉炼铁过程提出了更高的要求。实现高炉炼铁过程的关键指标智能感知、炉况诊断以及操作参数的合理优化控制,对推动高炉炼铁过程的安全、绿色低碳发展具有重要意义。首先,以高炉关键状态指标智能感知与预测作为切入点,从煤气利用率、铁水硅含量、透气性指数3个关键指标的感知与预测方法进行综述。其次,从专家系统以及数据驱动2个层面对高炉炉况监测与诊断的研究现状进行分析。然后,从专家系统与专家经验提取、多目标优化以及数据驱动预测控制3个角度综述了高炉操作参数优化及控制的研究进展。最后,通过分析各类模型、算法的优缺点,提出了当前高炉智能感知、炉况诊断以及操作优化当前面临的挑战与发展方向。With the advancement of carbon peak and carbon neutrality policy,higher demands have been placed on the blast furnace ironmaking process,which constitutes a primary energy consumption segment within the iron and steel industry.Achieving intelligent sensing of key indicators,diagnosing furnace conditions,and optimizing control of operational parameters in the blast furnace ironmaking process is of paramount significance for promoting its safe,green,and low-carbon development.Firstly,taking intelligent sensing and prediction of key state indicators in blast furnaces as a starting point,providing a comprehensive review of sensing and prediction methods for three critical indicators:gas utilization rate,molten iron silicon content,and permeability index.Secondly,an analysis of the current research status of blast furnace condition monitoring and diagnosis is conducted from two perspectives:expert system and data-driven approaches.Subsequently,advancements in optimization and control of blast furnace operation parameters are reviewed from three angles:expert system and expert experience extraction,multi-objective optimization,and data-driven predictive control.Finally,by analyzing the strengths and weaknesses of various models and algorithms,the current challenges and development directions for intelligent sensing,furnace condition diagnosis,and operation optimization of blast furnaces are proposed.

关 键 词:钢铁冶金过程 智能感知技术 炉况诊断 决策优化 智能控制 

分 类 号:TF54[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象