检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王琳 周捷 林海飞 李文静 张宇少 WANG Lin;ZHOU Jie;LIN Haifei;LI Wenjing;ZHANG Yushao(College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China;Western Coal Mine Gas Disaster Prevention and Control Key Laboratory of Colleges and Universities in Shaanxi Province,Xi'an 710054,China)
机构地区:[1]西安科技大学安全科学与工程学院,陕西西安710054 [2]西部煤矿瓦斯灾害防控陕西省高等学校重点实验室,陕西西安710054
出 处:《煤炭工程》2024年第4期125-132,共8页Coal Engineering
基 金:国家自然科学基金面上项目(52174207);陕西省杰出青年科学基金(2020JC-48);陕西省自然科学基金(2019JLP-02)。
摘 要:煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短期记忆(LSTM)、Elman神经网络及自适应增强(Adaboost)五种算法进行初选,得到最优基模型为最小支持二乘向量机、自适应增强以及深度信念网络。通过基模型集成得到7种瓦斯含量预测模型,得到Stacking-LSSVM-Adaboost、Adaboost、Stacking-Adaboost-DBN和Stacking-LSSVM-Adaboost-DBN四种模型为优选模型。采用判定系数、平均绝对误差、均方根误差以及平均绝对百分比误差四种预测评价指标对优选出的四种模型进行综合评估,选择MAE<0.2、RMSE<0.3且MAPE<10的模型作为最终瓦斯含量预测模型。结果表明,Stacking-LSSVM-Adaboost-DBN集成模型判定系数为0.951,MAE、RMSE和MAPE分别为0.170、0.204及7.412,所建立模型拥有较高预测精度,可为矿井瓦斯灾害防治提供一定依据。Accurate prediction of coal seam gas content is an important link to prevent underground gas disasters.In order to improve the scientificity and accuracy of underground gas content prediction,41 sets of data from different mining areas were obtained,including gas content,buried depth,coal thickness,moisture,ash and volatile content.Five algorithms of least square support vector machine(LSSVM),deep belief network(DBN),Long short-term memory(LSTM),Elman neural network and adaptive enhancement(Adaboost)were selected,and the optimal base model were the least square support vector machine(LSSVM),adaptive enhancement and deep belief network.Seven gas content prediction models were integrated through the base model,and four models of Stacking-LSSSVM-Adaboost,Adaboost,Stacking-Adaboost-DBN and Stacking-LSSSVm-Adaboost-DBN were optimal models.Four prediction and evaluation indexes,namely,decision coefficient,mean absolute error,root mean square error and mean absolute percentage error,were used to comprehensively evaluate the four selected models,and the models with MAE<0.2,RMSE<0.3 and MAPE<10 were selected as the final prediction models for gas content.The results show that the decision coefficient of the integrated Stacking-LSSVM-Adaboost-DBN model was 0.951,and MAE,RMSE and MAPE were 0.170,0.204 and 7.412,respectively.The established model has high prediction accuracy and can provide a basis for mine gas disaster prevention.
关 键 词:瓦斯含量预测 Stacking集成 五折交叉验证 模型优选 模型评价
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7