基于数据驱动的凸轮磨削轮廓误差补偿  

Profile Error Compensation for Cam Grinding Based on Data Driven

在线阅读下载全文

作  者:王静 张福旺 张洁 桑福玉 WANG Jing;ZHANG Fuwang;ZHANG Jie;SANG Fuyu(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo Henan 454003,China;Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment,Jiaozuo Henan 454003,China)

机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454003 [2]河南省智能装备直驱技术与控制国际联合实验室,河南焦作454003

出  处:《机床与液压》2024年第10期43-49,共7页Machine Tool & Hydraulics

基  金:河南省高等学校重点科研项目计划(22B413005);河南省高校基本科研业务费专项资金-青年探索创新性基金项目(NSFRF220431);河南理工大学博士项目基金(B2018-660807/027);河南省自然科学基金青年项目(232300420417)。

摘  要:针对数控凸轮磨削机床在加工过程中存在的周期性、重复性轮廓误差和不易建模等问题,提出一种基于数据驱动的轮廓误差补偿策略。在数控凸轮磨削机床的单轴伺服跟踪系统中加入无模型自适应迭代学习控制,该方法沿迭代轴引入伪偏导数,将复杂的非线性系统动态线性化处理。针对两轴之间由于伺服跟踪误差不同导致的滞后量不同,利用交叉耦合迭代学习控制,将补偿量按照交叉耦合系数反馈到单轴伺服控制系统中,实现对凸轮磨削轮廓误差的补偿。最后通过仿真实验验证了提出的轮廓误差补偿策略可以有效减小凸轮的轮廓误差,提高了数控凸轮磨削机床的加工精度。Aiming at the problems of periodic and repetitive profile errors and difficult modeling in CNC cam grinding machine,a data driven profile error compensation strategy was proposed.In the single axis servo tracking system of CNC cam grinding machine,a model-free adaptive iterative learning control was added,and the pseudo partial derivative was introduced along the iterative axis to dy-namically linearize the complex nonlinear system.In view of the different hysteresis caused by the different servo tracking errors between the two axes,cross coupled iterative learning control was used to feedback the compensation amount to the single axis servo control sys-tem according to the cross coupling coefficient to realize the compensation of the cam grinding profile error.According to the simulation experiment results,the proposed profile error compensation strategy can effectively reduce the profile error of the cam and improve the machining accuracy of the CNC cam grinding machine.

关 键 词:轮廓误差 数控驱动 交叉耦合 无模型自适应迭代学习控制 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象