A High Order Accurate Bound-Preserving Compact Finite Difference Scheme for Two-Dimensional Incompressible Flow  

在线阅读下载全文

作  者:Hao Li Xiangxiong Zhang 

机构地区:[1]Department of Mathematics,Purdue University,150 N.University Street,West Lafayette,IN,47907-2067,USA

出  处:《Communications on Applied Mathematics and Computation》2024年第1期113-141,共29页应用数学与计算数学学报(英文)

基  金:supported by NSF DMS-1913120.

摘  要:For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.

关 键 词:Finite difference MONOTONICITY Bound-preserving Discrete maximum principle Passive convection Incompressible flow Total variation bounded limiter 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象