Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach  

在线阅读下载全文

作  者:Xuechun Liu Haijin Wang Jue Yan Xinghui Zhong 

机构地区:[1]School of Mathematical Sciences,Zhejiang University,Hangzhou,310027,Zhejiang,China [2]School of Science,Nanjing University of Posts and Telecommunications,Nanjing,210023,Jiangsu,China [3]Department of Mathematics,Iowa State University,Ames,50011,IA,USA

出  处:《Communications on Applied Mathematics and Computation》2024年第1期257-278,共22页应用数学与计算数学学报(英文)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214);the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011);supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716);supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).

摘  要:This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.

关 键 词:Direct discontinuous Galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象