A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations  

在线阅读下载全文

作  者:Mengjiao Jiao Yan Jiang Mengping Zhang 

机构地区:[1]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,Anhui,China

出  处:《Communications on Applied Mathematics and Computation》2024年第1期279-310,共32页应用数学与计算数学学报(英文)

基  金:supported by the NSFC Grant 11901555,12271499;the Cyrus Tang Foundation;supported by the NSFC Grant 11871448 and 12126604.

摘  要:In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.

关 键 词:Viscous and resistive MHD equations Positivity-preserving Discontinuous Galerkin(DG)method High order accuracy 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象