Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation  

在线阅读下载全文

作  者:Bo Dong Wei Wang 

机构地区:[1]Department of Mathematics,University of Massachusetts Dartmouth,North Dartmouth,MA,02747,USA [2]Department of Mathematics and Statistics,Florida International University,Miami,FL,33199,USA

出  处:《Communications on Applied Mathematics and Computation》2024年第1期311-324,共14页应用数学与计算数学学报(英文)

基  金:supported by the National Science Foundation grant DMS-1818998.

摘  要:In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.

关 键 词:Discontinuous Galerkin(DG)method Multiscale method Resonance errors One-dimensional Schrödinger equation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象