Population Dynamics in an Advective Environment  

在线阅读下载全文

作  者:King-Yeung Lam Ray Lee Yuan Lou 

机构地区:[1]Department of Mathematics,The Ohio State University,Columbus,OH,43210,USA [2]School of Mathematical Sciences,CMA-Shanghai and MOE-LSC,Shanghai Jiao Tong University,Shanghai,200240,China

出  处:《Communications on Applied Mathematics and Computation》2024年第1期399-430,共32页应用数学与计算数学学报(英文)

基  金:supported by the National Science Foundation grant DMS-1853561;supported by the National Science Foundation of China grants No.12250710674,12261160366,12226328.

摘  要:We consider a one-dimensional reaction-diffusion equation describing single-and two-species population dynamics in an advective environment,based on the modeling frameworks proposed by Lutscher et al.in 2006.We analyze the effect of rate of loss of individuals at both the upstream and downstream boundaries.In the single-species case,we prove the existence of the critical domain size and provide explicit formulas in terms of model parameters.We further derive qualitative properties of the critical domain size and show that,in some cases,the critical domain size is either strictly decreasing over all diffusion rates,or monotonically increasing after first decreasing to a minimum.We also consider competition between species differing only in their diffusion rates.For two species having large diffusion rates,we give a sufficient condition to determine whether the faster or slower diffuser wins the competition.We also briefly discuss applications of these results to competition in species whose spatial niche is affected by shifting isotherms caused by climate change.

关 键 词:Reaction-diffusion-advection Critical domain size COMPETITION Climate change 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象