检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shijie Dong Philippe G.LeFloch Zhen Lei
机构地区:[1]Southern University of Science and Technology,SUSTech International Center for Mathematics,and Department of Mathematics,Shenzhen 518055,China [2]Fudan University,School of Mathematical Sciences,220 Handan Road,Shanghai 200433,China [3]Laboratoire Jacques-Louis Lions and Centre National de la Recherche Scientifique,Sorbonne Université,4 Place Jussieu,Paris 75252,France [4]Shanghai Center for Mathematical Sciences,Shanghai 200433,China
出 处:《Fundamental Research》2024年第2期270-283,共14页自然科学基础研究(英文版)
基 金:supported by the China Postdoctoral Science Foundation(2021M690702);The author Z.L.was in part supported by NSFC(11725102);Sino-German Center(M-0548);the National Key R&D Program of China(2018AAA0100303)National Support Program for Young Top-Notch Talents;Shanghai Science and Technology Program[21JC1400600 and No.19JC1420101].
摘 要:Alinhac solved a long-standing open problem in 2001 and established that quasilinear wave equations in two space dimensions with quadratic null nonlinearities admit global-in-time solutions,provided that the initial data are compactly supported and sufficiently small in Sobolev norm.In this work,Alinhac obtained an upper bound with polynomial growth in time for the top-order energy of the solutions.A natural question then arises whether the time-growth is a true phenomenon,despite the possible conservation of basic energy.In the present paper,we establish that the top-order energy of the solutions in Alinhac theorem remains globally bounded in time.
关 键 词:Quasilinear wave equation Global-in-time solution Uniform energy bounds Quadratic null nonlinearity Hyperboloidal foliation method Vector field method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7