检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chen Li Yang Cao Ye Zhu Debo Cheng Chengyuan Li Yasuhiko Morimoto
机构地区:[1]Graduate School of Informatics,Nagoya University,Chikusa,Nagoya 464-8602,Japan [2]Centre for Cyber Resilience and Trust,Deakin University,Burwood 3125,Australia [3]Science,Technology,Engineering and Mathematics(STEM),University of South Australia,Adelaide 5000,Australia [4]Graduate School of Engineering,Hiroshima University,Higashi-hiroshima 10587,Japan
出 处:《Machine Intelligence Research》2024年第3期481-494,共14页机器智能研究(英文版)
摘 要:Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model′s interpretability and accuracy.This paper introduces an end-to-end deep learning model,named representation-enhanced knowledge graph convolutional networks(RKGCN),which dynamically analyses each user′s preferences and makes a recommendation of suitable items.It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs.RKGCN is able to offer more personalized and relevant recommendations in three different scenarios.The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies,books,and music.
关 键 词:Deep learning recommendation systems knowledge graph graph convolutional networks(GCNs) graph neural networks(GNNs)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49