EB态TA10钛合金高温变形行为及热加工图  被引量:1

High temperature deformation behavior and processing map of TA10 titanium alloy EB ingot

在线阅读下载全文

作  者:张启飞 储双杰[1,2] 梁高飞 杨帅 王美晨 毛博[1] ZHANG Qifei;CHU Shuangjie;LIANG Gaofei;YANG Shuai;WANG Meichen;MAO Bo(School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Baoshan Iron&Steel Co.,Ltd.,Shanghai 201900,China;Baowu Special Metallurgy Co.,Ltd.,Shanghai 200940,China;Western Metal Materials Co.,Ltd.,Xi’an 710201,China)

机构地区:[1]上海交通大学材料科学与工程学院,上海200240 [2]宝山钢铁股份有限公司,上海201900 [3]宝武特种冶金有限公司,上海200940 [4]西部金属材料股份有限公司,西安710201

出  处:《中国有色金属学报》2024年第5期1555-1565,共11页The Chinese Journal of Nonferrous Metals

基  金:国家重点研发计划资助项目(2022YFB3705603);上海市科研计划资助项目(22SQBS00600)。

摘  要:以电子束冷床(EB)炉单次熔铸的TA10钛合金扁锭为研究对象,利用Gleeble−3800热模拟试验机开展高且宽应变速率范围(0.01~30 s^(−1))下的等温压缩试验,研究该合金在800~1000℃下变形60%时的高温力学行为及铸态组织演变特征,建立基于峰值应力的高温塑性本构方程,绘制考虑应变的热加工图,深入讨论能量耗散效率因子与宏观、微观组织、力学响应间的关联关系。结果表明:随着变形温度升高或应变速率降低,TA10钛合金流变应力减小;变形温度高于或低于相变点时,峰值应力与变形温度均呈线性相关。Arrhenius方程能较好地预测该合金变形抗力与工艺参数间的变化规律。该合金不适合单道次大变形,较为适合变形量中等且较慢应变速率下的成形方式,可尝试开展高速率多次小变形的方式成形。该合金在两相区慢应变速率下热变形时的流变软化机制为动态球化或塑性流动局部化,而高应变速率下应力塌陷现象的主要原因为宏观失稳,且其在单相区的软化机制以动态回复为主。TA10 titanium alloy is currently known as the most competitive corrosion-resistant titanium alloy.This alloy plate ingots obtained from single melting in an electron beam cooling bed(EB)furnace were regarded as the research object.Isothermal compression tests within a high and wide strain rate range(0.01−30 s^(−1))were carried out on the Gleeble−3800 thermomechanical simulator to investigate the high-temperature mechanical behavior characteristics and the as-cast macro-and micro-structural evolutions of the tested alloy at deformation amount of 60%under temperature range from 800℃to 1000℃.The high-temperature plastic constitutive equation based on peak stress was established.Hot processing maps considering strain were constructed to deeply discuss the relationship between the energy dissipation efficiency factor and the macro-/micro-structure,as well as the mechanical response.The results reveal that the flow stress of TA10 titanium alloy decreases with increasing deformation temperature or decreasing strain rate.The peak stress exhibits a linear relationship with the deformation temperature when the deformation temperature is above or below theβtransus temperature.The Arrhenius equation is proven effective in predicting the variation in deformation resistance based on process parameters for this alloy.It is recommended to use this alloy for forming processes with medium deformation amounts and lower strain rates,while avoiding single-pass large deformation amounts.Alternatively,high-speed and multiple-pass small deformation amount methods can be explored for forming purposes.Additionally,it is determined that the flow softening mechanism of this alloy during hot deformation at lower strain rates in the two-phase region involves dynamic globularization or plastic flow localization.However,in the case of hot deformation at higher strain rates,the main reason for the phenomenon of stress collapse is macro instability.Lastly,it is found that the softening mechanism in the single-phase region is primarily

关 键 词:TA10钛合金 高温力学行为 铸态组织演变 高温塑性本构方程 热加工图 

分 类 号:TG146.2[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象