检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:米俊豪 周荣斌 杨日荣[1,3] MI Jun-hao;ZHOU Rong-bin;YANG Ri-rong(Center for Genomic and Personalized Medicine,Guangxi key Laboratory for Genomic and Personalized Medicine,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine,Guangxi Medical University,Nanning Guangxi 530021,China;Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry,Guangxi Medical University,Nanning Guangxi 530021,China;Department of Immunology,School of Basic Medical Sciences,Guangxi Medical University,Nanning Guangxi 530021,China.)
机构地区:[1]广西医科大学基因组与个体化医学研究中心,广西基因组与个体化医学研究重点实验室,广西基因组与个体化医学协同创新中心,广西南宁530021 [2]广西医科大学再生医学与医用生物资源开发应用省部共建协同创新中心,广西南宁530021 [3]广西医科大学基础医学院免疫学教研室,广西南宁530021
出 处:《中华养生保健》2024年第12期1-5,共5页CHINESE HEALTH CARE
基 金:国家自然科学基金(82260575)。
摘 要:目的分析肥大细胞相关基因与膀胱癌预后间的关系,筛选预后关键基因,构建膀胱癌预后风险模型。方法利用肥大细胞批量RNA测序(bulk RNA-seq)数据提取差异基因,并进行KEGG、GO分析与基因集富集分析(GSEA)。通过查阅文献获得膀胱癌单细胞测序内的肥大细胞特征基因。选取共有基因,使用Lasso回归与多因素COX回归筛选关键预后基因,基于风险评分,将患者分为高风险组和低风险组。最后通过单因素与多因素COX回归分析,结合风险评分与多个独立预后因素共同开发列线图以预测膀胱癌患者的生存率。结果构建预后模型的五个基因是WDR45B、EI24、NCOR1、VEGFA和RNF19A,五个基因成功将患者分为高风险组和低风险组。相较于低风险组,高风险组患者生存预后显著变差。同时成功在GSE31864数据验证模型效能。此外,在整合T/N分期、风险评分和年龄而构建的列线图,在膀胱癌患者生存预后方面具有良好的预测性。结论本研究提出一种基于膀胱癌患者肥大细胞五个基因的预后风险模型,可帮助临床医生评估预后情况,为膀胱癌患者提供个性化治疗建议。Objective Analyzing the relationship between mast cell-related genes and bladder cancer prognosis,screening prognostic key genes,and constructing a bladder cancer prognosis model.Methods Utilizing bulk RNA-seq data from mast cells,differential gene expression analysis was conducted followed by KEGG and GO enrichment analyses as well as Gene Set Enrichment Analysis(GSEA).Mast cell characteristic genes within bladder cancer single cells RNA sequencing were obtained from the literature.After identifying overlapping genes,key prognostic genes were selected using Lasso regression and multivariable COX regression.Based on the risk score,patients were stratified into high-risk and low-risk groups.Finally,through univariable and multivariable COX regression analyses,in conjunction with risk scores and multiple independent prognostic factors,a nomogram was developed to predict the survival rate of bladder cancer patients.Results The prognostic model comprisesfive genes:WDR45B,EI24,NCOR1,VEGFA,and RNF19A,effectively stratifying patients into high-risk and low-risk groups.Patients in the high-risk group exhibit significantly poorer survival prognosis compared to those in the low-risk group.The model's efficacy was successfully validated using the GSE31864 dataset.Additionally,the forest plot,constructed by integrating T/N staging,risk score,and age,demonstrates excellent predictive performance for bladder cancer patient survival prognosis.Conclusion This study proposes a prognostic risk model based onfive mast cell-related genes in bladder cancer patients.It can assist clinicians in evaluating prognosis and providing personalized treatment recommendations for bladder cancer patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229