检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuanting Wu Xiaoying Wang Wenlong Zhong Shan Zhang
出 处:《Particuology》2024年第5期210-217,共8页颗粒学报(英文版)
基 金:supported by the National Natural Science Foundation of China(grant No.52173214);the Youth Innovation Team of Shaanxi Universities(grant No.2022-70).
摘 要:Heterogeneous photocatalysts exhibit high catalytic efficiency in the degradation of pollutants,but their stability and repeatability is not very good and requires high structural matching.Simply by nanosizing the pure Bi_(2)WO_(6)(BWO)photocatalyst without constructing a heterojunction,there is a significant improvement in its performance,with an enhancement effect of about 2.3 times(99.43%).The high photocatalytic degradation efficiency of the material can be attributed to the enhanced light absorption effect brought by the three-dimensional inverse-opal structure SiO_(2)(IS)and the abundant surface adsorbed oxygen generated after the formation of Si–O–W bonds.In addition,the introduction of IS greatly increases the surface area of nanostructured BWO,which accelerates the charge transfer process,while the adsorbed oxygen promotes the participation of·O^(2−) in the photocatalytic reaction,thereby accelerating the consumption of photo-generated electrons and ultimately improving the separation of charge carriers.Furthermore,the matched photonic bandgap further improves the absorption and utilization of light of the material.In this work,we constructs Si–O–W bonds to obtain inverse-opal SiO_(2)/Bi_(2)WO_(6) with uniformly growth of pure phase nano BWO,which provides a feasible strategy for the preparation of high-performance pure-phase photocatalysts.
关 键 词:Bi_(2)WO_(6) SiO_(2) inverse-opal structure PHOTOCATALYSIS Adsorbed oxygen
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7