机构地区:[1]合肥综合性国家科学中心人工智能研究院,合肥230601 [2]合肥工业大学计算机与信息学院,合肥230601 [3]昆明理工大学冶金与能源工程学院,昆明650093
出 处:《中国图象图形学报》2024年第5期1447-1459,共13页Journal of Image and Graphics
基 金:国家自然科学基金项目(52104303);安徽省教育厅安徽高校协同创新项目(GXXT-2022-041)。
摘 要:目的 微表情是人在外界信息和刺激下做出的无意识面部动作,是判断受试人情绪和行为的重要佐证,在社会安全、商业谈判和心理辅导等领域都有着广泛的应用。微表情不同于一般的表情,分类与定位较为困难。针对这种情况,提出了一种基于光流窗口的双分支微表情定位网络(dual-branch optical flow spotting network,DFSN)和一种利用峰值帧光流信息的微表情分类网络,以识别视频中的微表情。方法 在定位任务中,首先提取面部图像,选择光流窗口大小和位置,计算面部光流并进行预处理;接下来输入双分支网络中进行两次分类,分别针对有无微表情和在有微表情前提下微表情所处阶段分类,并结合两个损失函数抑制过拟合;最后绘制出微表情强度曲线,曲线峰值所处位置即为所求微表情峰值帧。在分类任务中,选取视频起始帧和定位网络取得的峰值帧作为光流窗口,并利用欧拉运动放大算法(Eulerian motion magnification,EMM)放大微表情,最后采用峰值帧光流信息分类微表情视频。结果 微表情定位网络分别在CASME Ⅱ(Chinese Academy of Sciences Micro-expression Database Ⅱ)数据集和CASME数据集上按照使用留一被试交叉验证法进行了实验,与目前最好的定位方法比较,此网络在CASME Ⅱ上获得了最低的NMAE(normalized mean absolute error)值0.101 7,比Optical flow+UPC方法提高了9%。在CASME上获得的NMAE值为0.137 8,在此数据集上为次优定位方法。在定位网络得到的峰值基础上,分类网络在CASME Ⅱ上取得了89.79%的准确率,在CASME上取得了66.06%的准确率。若采用数据集标注的峰值,分类网络在CASME Ⅱ上取得了91.83%的准确率,在CASME上取得了76.96%的准确率。结论 提出的微表情定位网络可以有效定位视频中微表情峰值帧的位置,帮助后续网络进行分类,微表情分类网络可以有效区分不同种类的微表情视频。Objective Micro-expressions are unconscious facial actions made by people under external information and stimulation.These expressions are crucial proofs to judge people’s emotions and thoughts.Micro-expressions are widely used in the fields of social security,business negotiation,and psychological counseling.This type of expression is different from the general macro-expression and demonstrates characteristics of short duration, low expression intensity, and fastchange speed. Therefore, compared with macro-expressions, micro-expressions are more difficult to recognize and locate.Before the emergence of deep learning, researchers mostly used the traditional hand-crafted method, which utilizes the arti⁃ficially designed micro-expression extractors and complex parameter adjustment processes and algorithms to extract fea⁃tures. Some excellent algorithms can achieve competitive results, such as local binary pattern-three orthogonal plane andmain directional mean optical flow (MDMO). However, these algorithms mostly only extract shallow features, and improv⁃ing their accuracy is difficult. With the development of machine learning in the field of computer vision, the researchmethod of micro-expression based on deep learning has immediately become the mainstream. This method generally usesconvolutional neural network to extract and classify the image or video features. The accuracy of micro-expression identifi⁃cation is markedly improved due to its powerful feature extraction and learning capability. However, the spotting and classi⁃fication of micro-expressions are still difficult tasks due to the subtle characteristics of micro-expressions and the difficultyof extracting effective features. Therefore, this paper proposes a dual-branch optical flow spotting network based on opticalflow window, which can promote the solution of these problems. Method First, the size of the optical flow window isselected in accordance with the number of video frames, and three frames at both ends of the window are taken to st
关 键 词:微表情定位 情感计算 峰值帧 微表情分类 图像识别 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...