检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊学平[1,2] 刘月飞[1,2] FAN Xue-ping;LIU Yue-fei(Key Laboratory of Mechanics on Disaster and Environment in Western China of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730000,China)
机构地区:[1]兰州大学西部灾害与环境力学教育部重点实验室,兰州730000 [2]兰州大学土木工程与力学学院,兰州730000
出 处:《吉林大学学报(工学版)》2024年第4期1038-1044,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(51608243);甘肃省自然科学基金项目(1606RJYA246)。
摘 要:将极值应力数据视为时间序列,提出了桥梁结构极值应力的改进高斯混合粒子滤波(IGMPF)动态预测新方法。首先,利用桥梁健康监测极值应力数据建立动态非线性模型,将其作为粒子滤波算法的状态方程和监测方程;然后,引入最大期望(EM)算法来估计目标状态的概率分布,并嵌入高斯混合粒子滤波器中,进而利用改进高斯混合粒子滤波算法,结合应力监测数据实现结构极值应力的动态预测;最后,通过在役桥梁监测数据对本文模型和方法的合理性进行验证。结果表明:本文方法预测精度高,可用于工程实际应用中。The extreme stress data is taken as a time series,an improved Gaussian mixed particle filter(IGMPF)dynamic prediction new approach of bridge extreme stresses is proposed.Firstly,the dynamic nonlinear model,which provides state equation and monitored equation for the particle filter,is built with the monitored bridge extreme stress data;then,the EM algorithm is introduced to estimate the probability density function(PDF)of the target state and embedded in the Gaussian mixed particle filter(GMPF);further,with the IGMPF prediction approach,structural stresses are dynamically predicted based on the monitored extreme stress data;finally,the monitored stress data of an actual bridge is provided to illustrate the feasibility and application of the proposed models and methods.The result shows that the proposed algorithm has good prediction accuracy,can apply to real engineering.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49