检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU Zhiwei HUANG Bo XIA Chunming XIONG Yujie ZANG Zhensen ZHANG Yongqiang
机构地区:[1]College of Electrical and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China [2]Shanghai Zhongyu Academy of Industrial Internet,Shanghai 201620,China [3]AIoT Manufacturing Solutions Technology Co.,Ltd.,Hefei 230000,Anhui,China
出 处:《Wuhan University Journal of Natural Sciences》2024年第2期125-133,共9页武汉大学学报(自然科学英文版)
基 金:Supported by the Scientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence(2020AAA0109300);Science and Technology Commission of Shanghai Municipality(21DZ2203100);2023 Anhui Province Key Research and Development Plan Project-Special Project of Science and Technology Cooperation(2023i11020002)。
摘 要:The few-shot named entity recognition(NER)task aims to train a robust model in the source domain and transfer it to the target domain with very few annotated data.Currently,some approaches rely on the prototypical network for NER.However,these approaches often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words.We propose using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies.Additionally,we uti-lize an improved prototypical network and assign different weights to different samples that belong to the same class,thereby enhancing the performance of the few-shot NER task.Further experimental analysis demonstrates that our approach has significantly improved over baseline models across multiple datasets.
关 键 词:named entity recognition prototypical network spatial relation multidimensional convolution
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.129.118