基于人工蜂群算法的大规模武器目标分配研究  被引量:1

Large-scale weapon-target allocation based on an artificial bee colony algorithm

在线阅读下载全文

作  者:周玉虎 王桐[1] 陈立伟[1] 付李悦 韦正现 ZHOU Yuhu;WANG Tong;CHEN Liwei;FU Liyue;WEI Zhengxian(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;CSSC Systems Engineering Research Institute,Beijing 100094,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]中国船舶工业系统工程研究院,北京100094

出  处:《哈尔滨工程大学学报》2024年第6期1187-1195,共9页Journal of Harbin Engineering University

基  金:国家自然科学基金项目(61102105);国防科技重点实验室基金项目(6142209190107);先进船舶通信与信息技术工业和信息化部重点实验室项目(AMCIT2101-08);中央高校基本科研业务费项目(3072021CF0813)。

摘  要:针对大规模武器目标分配问题,本文提出一种改进的多目标武器目标分配模型,该模型将武器平台泛化为武器,并将武器平均飞行时间作为第2个优化目标。为有效解决这类问题,本文还提出了改进的自适应离散多目标人工蜂群算法。该算法基于人工蜂群算法和非支配排序策略,引入了自适应算子操作数、重用蜜源探索信息的变异概率策略,并通过蜜源之间、蜜源与外部解集之间的交互以提高算法的收敛性,通过算子的随机选择保持种群多样性。最后通过不同规模武器目标分配的对比实验,证明了所提自适应算子操作数与重用蜜源探索次数的变异概率策略的有效性,并与MOABC、MOPSO、NSGA-II算法在反向世代距离、超体积、时间3个方面进行比较,本文算法能够在保证时效性的前提下得到质量更好的Pareto解集。Addressing the problem of large-scale weapon-target allocation,we propose an improved multi-target WTA model that generalizes weapon platforms into weapons and takes the weapon average flight time as the second optimization objective.Herein,to effectively solve such problems,an improved adaptive discrete multi-objective artificial bee colony algorithm is additionally proposed.This algorithm is based on an artificial bee colony algorithm and a non-dominated sorting strategy and introduces adaptive operator operands and a mutation probability strategy that reuses nectar source exploration information.Furthermore,its convergence is improved through the interaction between nectar sources,as well as nectar sources and external solution sets,and the population diversity is maintained through the random selection of operators.Finally,comparative experiments of weapon-target assignments of different scales proved the effectiveness of the proposed adaptive operator operand and the mutation probability strategy of reused nectar source exploration times.The proposed algorithm is compared with MOABC,MOPSO,and NSGA-II algorithms in terms of interuerted generational distance(IGD),hyper volume(HV),and time,and found to obtain Pareto solution sets with better quality on the premise of ensuring timeliness.

关 键 词:人工蜂群算法 大规模 武器目标分配 多目标优化 自适应 算子操作数 非支配排序 

分 类 号:E919[军事]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象