检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏鸣宇 辛艳青[1,2,3] 刘长卿 凌宗成 SU Mingyu;XIN Yanqing;LIU Changqing;LING Zongcheng(School of Space Science and Physics,Shandong University,Weihai 264209,China;Institute of Space Sciences,Shandong University,Weihai 264209,China;Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,Weihai 264209,China)
机构地区:[1]山东大学空间科学与物理学院,山东威海264209 [2]山东大学空间科学研究院,山东威海264209 [3]山东省光学天文与日地空间环境重点实验室,山东威海264209
出 处:《量子电子学报》2024年第3期473-484,共12页Chinese Journal of Quantum Electronics
基 金:国家自然科学基金(12303067,U1931211);国家重点研发计划(2022YFF0711403);山东省自然科学基金(ZR2023QD106)。
摘 要:毅力号火星车携带的SuperCam载荷可以探测火星表面锰元素等成分信息。本研究依据SuperCam团队发布的地质标样激光诱导击穿光谱(LIBS)数据集,提出了一种基于集成学习的火星锰元素定量方法。本研究首先对LIBS光谱进行光谱降噪、去基线等预处理,随后进行光谱反卷积和分峰拟合,最终建立锰元素的定量方法,实现了锰元素的含量预测。实验评估了传统多变量定量方法(LASSO、弹性网络)和集成学习方法对锰元素定量精度的差异,发现后者的均方根误差相对于前两种传统方法分别平均下降了49%和30%,定量结果更接近样品真实值,表明基于集成学习的定量方法更适用于火星锰元素的定量反演。The SuperCam carried by the NASA's Perseverance rover can detect the surface material composition of Mars such as Mn.In order to determine the content of Mn on Mars,a quantitative method for Mn based on ensemble learning is proposed using the laser-induced breakdown spectroscopy(LIBS)dataset of geologic standards.A series of pre-processing such as spectral denosing and de-baselining are carried out firstly,then spectral deconvolution is performed to realize peak-fitting,and finally a quantitative method for Mn content prediction is established.The quantitative accuracy for Mn of the different quantitative methods were experimentally compared.The results show that,compared with the two traditional methods(LASSO and ElasticNet),the root-mean-square error of the proposed method based on ensemble learning is reduced by 49%and 30%on average,respectively,and the quantitative results of the new method are closer to the real values of the samples.This study shows that the ensemble learning based quantitative method is more suitable for Mars Mn quantification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33