基于LIBS-GD联用技术定量检测黄河水中Cu元素  

Quantitative detection of Cu element in Yellow River water based on LIBS⁃GD combined technology

在线阅读下载全文

作  者:常佳伟 王亚锐 马鑫荣 韩伟伟 张国鼎[1] 陆泉芳[2] 孙对兄[1] CHANG Jiawei;WANG Yarui;MA Xinrong;Han Weiwei;Zhang Guoding;LU Quanfang;SUN Duixiong(College of Phsics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China;College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,China)

机构地区:[1]西北师范大学物理与电子工程学院,甘肃兰州730070 [2]西北师范大学化学化工学院,甘肃兰州730070

出  处:《量子电子学报》2024年第3期514-521,共8页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金(61965015,11564037,61741513);兰州市人才创新创业项目(2022-RC-72)。

摘  要:针对目前定量检测液体中重金属元素含量方法存在的缺陷,引入了激光诱导击穿光谱-辉光放电联用(LIBS-GD)技术,并用于黄河水中铜(Cu)元素的检测。通过对不同质量浓度Cu标准溶液的测定,采用内标法建立了Cu的标准曲线,并得出Cu的检出限为0.045 mg/L。实验测量了不同采样点黄河水中Cu的质量浓度,并与火焰原子吸收光谱(AAS)方法进行了对比,结果显示,两种方法的测量结果一致性良好。LIBS-GD联用技术在Cu元素检测方面表现出良好的性能,为水体中重金属元素的检测提供了更简便高效的选择。In response to the shortcomings of the current methods for detecting heavy metal elements in liquid,the laser-induced breakdown spectroscopy-glow discharge(LIBS-GD)combined method is introduced for detecting Cu element in the Yellow River water.By measuring the Cu mass concentration of different standard solutions,a standard curve for Cu is established using the internal standard method,resulting in a detection limit of Cu element of 0.045 mg/L.The Cu mass concentration of the Yellow River water at different sampling points is measured experimentally using LIBS-GD,and the measurement results are compared with those of flame atomic absorption spectroscopy(AAS)method.The results show that the two methods have good consistency.The LIBS-GD combined technique demonstrates good performance in detecting Cu element,offering a more convenient and efficient option for heavy metal elements detection in water body.

关 键 词:光谱学 激光诱导击穿光谱-辉光放电联用技术 内标法 铜元素 

分 类 号:O433.4[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象