Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees  

在线阅读下载全文

作  者:Xiangkun He Wenhui Huang Chen Lv 

机构地区:[1]School of Mechanical and Aerospace Engineering,Nanyang Technological University,Singapore 639798,Singapore

出  处:《Engineering》2024年第2期77-89,共13页工程(英文)

基  金:supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological University;the Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156);the MTC Individual Research Grant(M22K2c0079);the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science);the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。

摘  要:While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.

关 键 词:Autonomous vehicle DECISION-MAKING Reinforcement learning Adversarial attack Safety guarantee 

分 类 号:U495[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象