基于用电信息采集数据的低压台区异常线损诊断新方法  被引量:2

A novel diagnosis method of abnormal line loss in low voltage station area based on electricity information acquisition data

在线阅读下载全文

作  者:宋晓林 张佳元 崔超奕 黄璐涵 骆一萍[2] 曾翔君[2] SONG Xiaolin;ZHANG Jiayuan;CUI Chaoyi;HUANG Luhan;LUO Yiping;ZENG Xiangjun(Marketing Service Centre(Measurement Center),State Grid Shanxi Electric Power Company,Xi’an 710199,China.;School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)

机构地区:[1]国网陕西省电力公司营销服务中心(计量中心),西安710199 [2]西安交通大学电气工程学院,西安710049

出  处:《电测与仪表》2024年第6期209-217,共9页Electrical Measurement & Instrumentation

基  金:国网陕西省电力公司资助项目(5226KY18002B)。

摘  要:低压配电网台区的线损分析对发现和解决异常线损问题,减小用电损失以及用户的精细化管理具有重要意义。文章基于全事件用电信息采集系统采集的真实台区数据,提出了一种新的低压台区线损诊断方法。该方法利用电网诊断规则对所采集的原始数据进行质量分析,并通过对台区线损特征地提取和分类,建立了基于电压信息的二分K-means聚类诊断算法和基于电量信息的全局搜索诊断算法,实现了对台户异常电能表的快速定位及台区线损异常的治理。通过剔除异常电能表和实际检验表明该方法具有较高的准确性和一定的实用性。The line loss analysis of the low-voltage distribution network station area is of great significance to discover and solve the problem of abnormal line loss,reduce electricity loss and fine management of users.Based on the real data collected by the full-event electricity information acquisition system,this paper proposes a novel line loss diagnosis method for low voltage station area.In this method,the grid diagnostic rules are used to analyze the quality of the collected raw data.By extracting and classifying of the line loss characteristics of the station area,a binary K-means clustering diagnostic algorithm is established based on voltage information,as well as a global search diagnostic algorithm based on power information,which realizes the rapid positioning of abnormal meters and the treatment of line loss anomalies in the station area.The results show that the proposed method has high accuracy and certain practicability by eliminating abnormal meters and actual tests.

关 键 词:低压配电网 台户关系 异常线损 

分 类 号:TM933[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象