检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐武[1] 范鑫豪 沈智方 刘洋 刘武 XU Wu;FAN Xinhao;SHEN Zhifang;LIU Yang;LIU Wu(School of Electrical and Information Engineering,Yunnan Minzu University,Kunming 650031,China;Water Supply and Power Supply Company of Xinjiang Dushanzi Petrochemical Company,Karamay 834000,China)
机构地区:[1]云南民族大学电气信息工程学院,昆明650031 [2]新疆独山子石化公司供水供电公司,克拉玛依834000
出 处:《南京信息工程大学学报》2024年第3期321-331,共11页Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基 金:国家自然科学基金(U1802271)。
摘 要:为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度.A prediction model based on ikPCA-FABAS-KELM is proposed to improve the short-term wind power prediction by traditional data-driven machine learning models.First,the principal component analysis is improved and the reversible kernel Principal Component Analysis(ikPCA)is proposed to reduce the complexity of input data while ensuring data features,with the purpose to advance the model in running speed.Second,the individual attrac-tion strategies for Firefly Algorithm(FA)are used to improve the Beetle Antennae Search(BAS)thus a FABAS algorithm is proposed.Finally,the FABAS algorithm is used to optimize the regularization parameter C and kernel parametersγof the Kernel Extreme Learning Machine(KELM),which can reduce the impact of manual parameter setting on blind model training thus improve model prediction accuracy.The simulation results show that the proposed model effectively improves the short-term wind power prediction accuracy.
关 键 词:短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.75.226