检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王承先 WANG Chengxian(School of Chinese Ethnic Minority Languages and Literatures,MinZu University of China,Beijing 100081,China)
机构地区:[1]中央民族大学中国少数民族语言文学学院,北京100081
出 处:《软件导刊》2024年第5期52-59,共8页Software Guide
摘 要:针对社会蜘蛛优化算法求解最小属性约简时收敛速度慢和约简结果差的问题,提出一种基于三重约束的社会蜘蛛优化最小属性约简算法(TRSSOAR),分别对初始化阶段、迭代过程中以及迭代结束后种群中的个体进行约束。首先,提出一种适应度投票策略优化种群初始状态,使种群中的多数个体处于良好的位置;然后,在迭代过程中引入对立学习,设计局部对立学习策略提升种群个体质量,扩大搜索空间;接下来为了获得较少的约简结果,采用冗余检测策略去除约简结果中的冗余属性;最后,在9个UCI数据集上进行实验,并与4种代表性算法进行比较。结果表明,该算法在约简能力、运行时间和收敛速度上均表现良好,在求解最小属性约简问题上具有一定的优越性。Aiming at the problem of slow convergence speed and poor reduction results when the social spider optimization algorithm solves the minimum attribute reduction.This paper proposed a minimum attribute reduction algorithm based on triple restraints social spider optimization(TRSSOAR).Constrain the individuals in the population during the initialization stage,during the iteration process and at the end of the iteration respectively.First,a fitness voting strategy is proposed to optimize the initial state of the population so that most individuals in the population are in a good position;Then,in the iterative process,opposition-based learning is introduced,and a local opposition-based learning strategy is designed to improve the individual quality of the population and expand the search space;Thirdly,in order to obtain fewer reduction results,a redundancy detection strategy is used to remove redundant attributes in the reduction results;finally,experiments are conducted on nine UCI data sets and compared with four representative algorithms.The results show that the proposed algorithm performs well in terms of reduction capability,running time and convergence speed,and has certain advantages in solving the minimum attribute reduction problem.
关 键 词:粗糙集 最小属性约简 社会蜘蛛优化 对立学习 冗余检测
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.36.242