A Novel Density-Based Spatial Clustering of Application with Noise Method for Data Clustering  

在线阅读下载全文

作  者:Yuchang Si 

机构地区:[1]Software College,Shenyang Normal University,Shenyang 110034,China

出  处:《IJLAI Transactions on Science and Engineering》2024年第2期51-58,共8页IJLAI科学与工程学报汇刊(英文)

摘  要:The traditional methods are easy to generate a large number of fake samples or data loss when classifying unbalanced data.Therefore,this paper proposes a novel DBSCAN(density-based spatial clustering of application with noise)for data clustering.The density-based DBSCAN clustering decomposition algorithm is applied to most classes of unbalanced data sets,which reduces the advantage of most class samples without data loss.The algorithm uses different distance measurements for disordered and ordered classification data,and assigns corresponding weights with average entropy.The experimental results show that the new algorithm has better clustering effect than other advanced clustering algorithms on both artificial and real data sets.

关 键 词:Data clustering DBSCAN Distance measurement 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象