基于HCPN的复杂BPMN协作模型数据流建模与验证  被引量:2

Data flow modeling and verification of complex BPMN collaboration models based on HCPN

在线阅读下载全文

作  者:黄凤兰[1] 倪枫[1] 刘姜[1] 陶蒙怡 周奕宁 李业勋 HUANG Fenglan;NI Feng;LIU Jiang;TAO Mengyi;ZHOU Yining;LI Yexun(School of Business,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学管理学院,上海200093

出  处:《计算机集成制造系统》2024年第5期1754-1769,共16页Computer Integrated Manufacturing Systems

基  金:国家自然科学基金资助项目(12371508);教育部产学合作协同育人资助项目(220603760210846);上海市“大学生创新创业训练计划”资助项目(SH2022072)。

摘  要:为了保证复杂BPMN协作模型的正确性,不仅要涵盖多实例和子进程等复杂元素,还要在检测控制流错误的同时检测数据流错误。但业务流程建模标注(BPMN 2.0)缺乏形式化语义的描述,这对模型正确性的验证造成了阻碍。因此,给出了一种具有弧权重的层次化着色Petri网(HCPN)的定义,它既可以对数据流进行形式化表示,又可以对多实例和子进程结构进行建模。进一步提出了从BPMN协作模型到HCPN模型的形式化映射方法。然后基于HCPN模型的弧权重给出了缺失、丢失和冗余3种数据流错误的定义,并提出了对应的检测算法。最后,设计了一个自动化建模与验证的框架,通过一个案例研究说明了该方法的有效性。To ensure the correctness of a complex BPMN collaboration model,not only complex elements such as multiple instances and subprocesses should be covered,but also data flow errors should be detected as well as control flow errors.However,Business Process Modeling Notation(BPMN 2.0)lacks formal semantics,which hinders the verification of the correctness of the model.The definition of hierarchical Colored Petri Net with arc weight(HCPN)was given,which could not only formally represent data flow,but also model the structure of multiple instances and sub-processes.Furthermore,a formal mapping method from BPMN collaboration model to HCPN model was proposed.Based on the arc weight of HCPN model,the definitions of missing,losing and redundant data flow errors were given,and the corresponding detection algorithms were proposed.An automated modeling and verification framework was designed,and a case study was given to illustrate the effectiveness of the proposed approach.

关 键 词:着色PETRI网 BPMN协作模型 数据流错误 模型验证 形式化 

分 类 号:TP311.52[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象