检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈繁 贾明明 王婧瑜[3] 程丽娜[2,4] 于皓 李慧颖 CHEN Fan;JIA Mingming;WANG Jingyu;CHENG Lina;YU Hao;LI Huiying(School of Surveying,Mapping and Exploration Engineering,Jilin Jianzhu University,Changchun 130118,China;Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;Jilin Academy of Agricultural Sciences,Changchun 130033,China;School of Earth Sciences,Jilin University,Changchun 130061,China;College of Environmental and Municipal Engineering,Qingdao University of Technology,Qingdao 266520,China)
机构地区:[1]吉林建筑大学测绘与勘查工程学院,吉林长春130118 [2]中国科学院东北地理与农业生态研究所,吉林长春130102 [3]吉林省农业科学院,吉林长春130033 [4]吉林大学地球科学学院,吉林长春130061 [5]青岛理工大学环境与市政工程学院,山东青岛266520
出 处:《遥感技术与应用》2024年第2期373-380,共8页Remote Sensing Technology and Application
基 金:国家自然科学基金青年项目(42101399);国家自然科学基金青年项目(42001383);山东省自然科学基金青年项目(ZR2020QD020)。
摘 要:滩涂作为潮间带生态系统的重要组成部分,具有维持海岸线稳定,加速物质交换和促进碳循环等独特的环境调节服务功能和生态效益。对潮间带湿地现状进行准确、及时的评估对实现可持续管理目标至关重要。研究借助Google Earth Engine(GEE)云计算平台,选用2020年Sentinel-2密集时间序列遥感影像,集成最大光谱指数合成算法(Maximum Spectral Index Composite,MSIC)和大津算法(Otsu)构建多层决策树分类模型,实现澳大利亚潮间带滩涂的快速自动化提取。经过矢量化处理得到2020年澳大利亚高分辨率潮间带滩涂空间分布图,提取的滩涂面积为10708.22 km^(2),总体精度为95.32%,Kappa系数为0.94。该数据集存储格式为.shp,时间分辨率为年,空间分辨率为10 m,数据量为154 M。该数据能促进并管理沿海生态系统,如红树林造林和控制互花米草等外来物种入侵,同时还可以作为科学研究的基础数据,如生物多样性、碳储量估算和海平面上升造成的海水侵蚀。As an important part of the intertidal ecosystem,tidal flats have unique environmental regulation ser⁃vice functions and ecological benefits such as maintaining coastline stability,accelerating material exchange and promoting carbon cycle.Accurate and timely assessment of the status of intertidal wetlands is essential to achiev⁃ing sustainable management goals.With the help of Google Earth Engine(GEE)cloud computing platform,this paper uses the 2020 Sentinel-2 dense time series remote sensing images,integrates the Maximum Spectral Index Composite algorithm(MSIC)and the Otsu algorithm(Otsu)to construct a multi-layer decision tree clas⁃sification model,so as to realize the rapid and automatic extraction of Australian intertidal tidal tidal flats.After vectorization,the spatial distribution dataset of high-resolution intertidal flats in Australia in 2020 was ob⁃tained,and the extracted tidal flats area was 10708.22 km^(2),with an overall accuracy of 95.32% and a Kappa co⁃efficient of 0.94.The dataset is stored in.shp format,with a temporal resolution of years,a spatial resolution of 10 m,and a data volume of 154 m.This data is suitable for coastline management,marine ecological research,environmental protection and monitoring,etc.The data can promote and manage coastal ecosystems,such as mangrove afforestation and control of alien species invasion such as Spartina alterniflora,and can also be used as basic data for scientific research,such as biodiversity,carbon storage estimation and sea level rise caused by sea level erosion etc.
关 键 词:Sentinel⁃2影像 滩涂湿地 Google Earth Engine(GEE) 最大光谱指数合成算法(MSIC) 大津算法(Otsu)
分 类 号:P748[天文地球—海洋科学] TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.185.226