机构地区:[1]齐鲁工业大学(山东省科学院)化学与化工学院,山东省高校轻工精细化学品重点实验室,济南市多尺度功能材料工程实验室,山东济南250353 [2]烟台先进材料与绿色制造山东省实验室,山东烟台264006
出 处:《Chinese Journal of Catalysis》2024年第4期334-345,共12页催化学报(英文)
基 金:国家自然科学基金(52202102);国家自然科学基金(51972180);山东省自然科学基金(ZR2019BB030);山东省自然科学基金(ZR2020ME082);山东省高等学校青年创新团队发展计划(2021KJ056);烟台先进材料与绿色制造山东省实验室开放基金(AMGM2023F13);烟台先进材料与绿色制造山东省实验室开放基金(AMGM2021F05);山东省大学生创新创业训练计划(S202210431016);齐鲁工业大学科教产融合试点工程基础研究类项目(2023PY022)。
摘 要:利用半导体光催化裂解水制氢被认为是解决日益严重的环境污染和能源短缺问题的有效途径之一,然而半导体光吸收范围窄、光生载流子复合率高以及光催化剂氧化还原能力差等问题限制了该技术的发展.为克服这些难题,构建能带结构匹配的S型异质结成为提高光催化活性的有效策略.该结构能实现光生载流子的空间分离和转移,有效地抑制其复合,同时保留了光催化体系的强氧化还原能力.本文利用原位化学浴沉积法成功地将ZnIn_(2)S_(4)纳米片修饰在花状TiO_(2)微球表面,制备了具有独特分级结构的TiO_(2)/ZnIn_(2)S_(4) S型异质结光催化材料,并研究了其光催化析氢活性.Zeta电位结果表明,TiO_(2)带有正电荷,可以率先吸附溶液中的S2-并与后续加入的In3+和Zn2+原位反应生成ZnIn_(2)S_(4),进而构建稳定的TiO_(2)/ZnIn_(2)S_(4)异质结光催化剂.X射线粉末衍射、扫描电镜和透射电镜等结果证实了TiO_(2)/ZnIn_(2)S_(4)异质结光催化剂的成功制备.紫外-可见漫反射结果表明,ZnIn_(2)S_(4)的引入明显增强了TiO_(2)的光吸收能力.结合莫特-肖特基曲线、X射线光电子能价带谱和紫外光电子能谱等表征结果,确定了TiO_(2)和ZnIn_(2)S_(4)的能带结构及费米能级位置.光电流密度、电化学阻抗、表面光电压、荧光光谱和时间分辨荧光光谱等测试结果表明,TiO_(2)/ZnIn_(2)S_(4)异质结具有较好的光生载流子分离和转移效率以及更长的光生载流子寿命.线性扫描伏安和接触角测试证明了TiO_(2)/ZnIn_(2)S_(4)异质结具有更低的过电势和良好的亲水性,更有利于析氢反应发生.通过阿伦尼乌斯方程对反应温度和析氢速率之间的关系进行拟合,结果发现,TiO_(2)/ZnIn_(2)S_(4)异质结具有更低的析氢反应表观活化能,从而更有利于光催化析氢反应发生.非原位和原位X射线光电子能谱以及电子自旋共振光谱等结果表明,TiO_(2)/ZnIn_(2)S_(4)异Photocatalytic water splitting to produce H2 using semiconductor photocatalysts is a reliable approach to alleviating energy shortages and environmental pollution.However,the inadequate light-harvesting ability,rapid photogenerated carrier recombination,and inferior redox capacity of the individual photocatalysts restrict their photocatalytic activity.To address these limitations,a hierarchical S-scheme heterojunction of ZnIn_(2)S_(4)-nanosheet-decorated flower-like TiO_(2)microspheres for enhancing photocatalytic H2 evolution,purposely constructed through in situ chemical bath deposition,has been reported.The as-synthesized TiO_(2)/ZnIn_(2)S_(4) heterojunctions exhibited ZnIn_(2)S_(4)-content-dependent photocatalytic activity for solar-driven H_(2)evolution.As a result,the optimized TiO_(2)/ZnIn_(2)S_(4)heterojunction exhibited a superior photocatalytic H_(2)evolution rate of 6.85 mmol g^(-1)h^(-1),approximately 171.2-and 3.9-fold with respect to that obtained on pure TiO_(2)and ZnIn_(2)S_(4),respectively,mainly attributed to the unique hierarchical structure,extended light-harvesting ability,enhanced redox capacity,and improved separation and transfer efficiencies of the photogenerated carriers induced by the S-scheme heterojunctions.Simultaneously,a detailed analysis of the S-scheme electron transfer pathway in the TiO_(2)/ZnIn_(2)S_(4) heterojunction was performed using in situ irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance spectroscopy.This study provides insights into the design of highly active heterojunction photocatalysts for sustainable solar-to-fuel energy conversion.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...