基于机器视觉的煤矿用输送带跑偏检测方法  被引量:1

Detection method of conveyor belt deviation for coal mine based on machine vision

在线阅读下载全文

作  者:李海龙 LI Hailong(Production Service Center of CHN ENERGY Shendong Coal,Ordos 017209,Inner Mongolia,China)

机构地区:[1]国能神东煤炭生产服务中心,内蒙古鄂尔多斯017209

出  处:《矿山机械》2024年第5期29-33,共5页Mining & Processing Equipment

摘  要:针对传统输送带只能依靠定期检查或故障后停工维修来治理跑偏,势必会对生产造成损失,延误工期等痛点,提出了基于机器视觉的煤矿用输送带跑偏检测方法。引入机器视觉的激光束照明技术和光学成像技术,确定输送带位置信息;利用灰度图像检测、直线激光束检测等技术,对输送带跑偏情况进行监测,实现对输送带跑偏故障的预警。经试验验证,该检测方法的准确度高出传统方法7.2%,可有效降低煤矿运输事故的发生率。A machine vision based detection method for the conveyor belt deviation of coal mines was proposed to address the problem of traditional conveyor belts that could only rely on regular inspections or maintenance after faults to control the deviation,which would inevitably cause production losses and delay the construction period.In this method,the laser beam llumination technology and the optical imaging technology of machine vision were introduced to determine the position information of the conveyor belt.Then,using gray image detection,linear laser beam detection and other technologies,the conveyor belt deviation situation was monitored,and the early warning of conveyor belt deviation fault was realized.The experimental results showed that the accuracy of the detection method was 7.2%higher than that of the traditional method,which could effectively reduce the coal mine transportation accidents.

关 键 词:机器视觉 输送带 跑偏检测 激光 

分 类 号:TD528.1[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象