检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁飞 张可可 龚淼 李宾皑 LU Fei;ZHANG Keke;GONG Miao;LI Bin’ai(East China Power Transmission and Transformation Engineering Co.,Ltd.,Shanghai 201803,China;State Grid Shanghai Electric Power Company,Shanghai 200122,China)
机构地区:[1]华东送变电工程有限公司,上海201803 [2]国网上海市电力公司,上海200122
出 处:《微特电机》2024年第5期65-69,共5页Small & Special Electrical Machines
基 金:国网上海电力公司科技项目(520900220016)。
摘 要:在永磁同步电机(PMSM)无感控制中,采用扩展卡尔曼滤波(EKF)来估计PMSM的转子位置和转速,采用一阶Taylor展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。针对该问题,提出了基于二阶近似的EKF方法,保留二阶偏微分项,提高了系统模型精度。仿真实验证明,该方法可以获得比传统方法更精确的估计结果。The extended Kalman filter(EKF)is typically employed in sensorless control of permanent magnet synchronous motors(PMSM)to estimate the rotor position and speed.The system state model was often linearized using the first-order Taylor expansion.Omitting second-order or higher terms during linearization could result in significant modeling errors.In response to the issue,an EKF method based on second-order approximation was proposed,which preserved second-order partial derivatived and improved the accuracy of the system model.Simulation experiments showed that the method could obtain more accurate estimation results than traditional methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147