改进TDM-LoRa低功耗森林火灾监测预警系统  被引量:3

Design of a low power forest fire monitoring and warning system based on improved TDM-LoRa

在线阅读下载全文

作  者:林金亮 彭侠夫[1] LIN Jiliang;PENG Xiafu(School of Aerospace Engineering,Xiamen University,Xiamen,Fujian 361102,China;Department of Information and Manufacturing,Minxi Vocational and Technical College,Longyan,Fujian 364021,China)

机构地区:[1]厦门大学航空航天学院,福建厦门361102 [2]闽西职业技术学院信息工程学院,福建龙岩364021

出  处:《福州大学学报(自然科学版)》2024年第3期253-260,共8页Journal of Fuzhou University(Natural Science Edition)

基  金:福建省教育厅中青年教师教育科研资助项目(JAT210903);龙岩市科技局重点科研资助项目(2022LYF9007)。

摘  要:针对目前森林火灾监测系统成本高、功耗大、维护复杂的缺点,提出一种基于改进TDM-LoRa设计的低功耗森林火灾监测预警系统.系统以STM32系列微处理器为节点控制核心,LoRa-SX1278芯片为通信模块,并使用增量传输和改进时分复用通信机制,有效降低节点能耗,从而延长监测节点和汇聚节点寿命.试验结果表明,数据信息在发射功率为20 dBm、传输速率为1.2 kbit·s^(-1)的情况下,节点在3500 m范围内实现的丢包率仅为7.2%;在使用2600 mA·h的电池、数据采集上传间隔时间为30 min的情况下,单个节点有效工作时间理论可达90.7个月,实现无中继远距离低功耗森林环境监测数据的采集.The design of a low-power forest fire monitoring and warning system based on improved TDM-LoRa is proposed to address the drawbacks of high cost,high power consumption,and complex maintenance of current forest fire monitoring systems.The system uses the STM32 series microprocessor as the node control core,LoRa-SX1278 chip as the communication module,and uses incremental transmission and improved time division multiplexing communication mechanism to effectively reduce node energy consumption,thereby extending the lifespan of monitoring nodes and aggregation nodes.The experimental results show that with a transmission power of 20 dBm and a transmission rate of 1.2 kbit·s^(-1),the node can achieve a packet loss rate of only 7.2%within the range of 3.5 km.When using a 2600 mA·h battery with a data collection and upload interval of 30 min,the theoretical effective working time of a single node can reach 90.7 months,achieving the collection of remote flow-power orest environmental monitoring data without relay.

关 键 词:森林火灾 火灾监测预警系统 改进TDM-LoRa 增量传输 低功耗 丢包率 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TP391[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象