检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuqi Wang Xu-Yao Zhang Cheng-Lin Liu Tieniu Tan Zhaoxiang Zhang
出 处:《National Science Review》2024年第4期21-24,共4页国家科学评论(英文版)
基 金:This work is supported in part by the 2035 Innovation Program of CAS,the National Key R&D Program of China(2022ZD0160102);the National Natural Science Foundation of China(61836014,U21B2042,62072457 and 62006231).
摘 要:Representation learning is a core issue in artificial intelligence(AI).Currently,there exists a disparity in the choice of representation between humans and machines.Humans rely on discrete language for communication and learning,whereas machines utilize continuous features for computation and representation.Discrete symbols are low-dimensional,decoupled and offer robust reasoning abilities,while continuous features are high-dimensional,coupled and possess remarkable abstracting capabilities.In recent years,deep learning[1]has developed the idea of continuous representation to the extreme,using billions of parameters to achieve high accuracies.Although this is reasonable from a statistical perspective,it has other major problems,such as a lack of interpretability,poor generalization and being easily attacked.Both paradigms have strengths and weaknesses,and a better choice is to seek reconciliation.
关 键 词:SYMBOLS utilize SYMBOLIC
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49