机构地区:[1]中国疾病预防控制中心中国现场流行病学培训项目,北京100050 [2]济南市疾病预防控制中心科研教育部,山东济南250021 [3]济南市疾病预防控制中心环境健康所,山东济南250021 [4]中国疾病预防控制中心环境与健康相关产品安全所,北京100021 [5]济南市精神卫生中心,山东济南250309
出 处:《环境与职业医学》2024年第4期384-389,共6页Journal of Environmental and Occupational Medicine
基 金:中国现场流行病学培训项目(1023932200-20010000027);济南市卫生健康委员会科技计划项目(2021-公-02)。
摘 要:[背景]近年来中国夏季区域性高温天气频繁出现,中暑是高温所导致的代表性气象病。分析中暑流行特征及热浪暴露对其影响,对做好中暑的监测、预警和防控工作具有重要意义。[目的]了解济南市中暑病例的流行病学特征,探讨热浪暴露对中暑的影响。收集2017-2022年济南市中暑病例的个案信息以及同期逐日的气象因素数据,描述济南市中暑病例的发生时间、人群和地区分布特征,采用时间分层的病例交叉设计并结合条件logistic回归模型,探索12种热浪定义(不同强度和持续时间组合)下热浪暴露对中暑的影响。其中,热浪强度分别使用研究期间日均温度的第90百分位数(P_(90))和P_(95)、P_(97.5)、P_(99)表示,持续时间包括≥2 d、≥3 d、≥4 d,记为Pi(k),i为温度阈值,k为持续时间,如P90(2)即表示连续至少2 d的日均温度大于等于研究期间日均温度的第90百分位数对应的温度值。以lag01表示滞后1 d的累积滞后效应,以此类推。[结果]2017-2022年济南市共报告中暑病例1394例,轻症患者581例,重症患者813例;累积报告死亡85例,累积病死率为6.10%。流行特征分析结果显示:研究期间报告的中暑病例集中分布于6-8月,且在7月出现高峰(665例,47.70%);中暑病例中男女性别比为2.02:1,病例的高发年龄段为50~89岁,且在70~79岁组和50~59岁组出现两次高峰,但最高峰出现在70~79岁;病例高发地区分布于济南市西部的中心城区(天桥区,274例,19.66%;槐荫区,223例,16.00%)和周边农村地区(平阴县,254例,18.22%)。热浪暴露影响效应分析结果显示,热浪暴露对中暑的影响具有统计学意义。对中暑影响的最大效应估计值分别出现在P_(99)(2)、P_(97.5)(3)和P_(97.5)(4)定义下的lag04、lag03、lag04,OR(95%CI)分别为9.27(4.71~14.24)、8.95(6.17~12.98)和8.22(4.91~13.78)。暴露-反应关系曲线提示,随着日均温度的升高,中暑风险呈上升趋势。[结论]每年7月是�[Background]In recent years,regional high-temperature weather in summer occurs frequently in China.Heat stroke is the most representative meteorological disease caused by high tempera-ture.In order to improve monitoring,early warning,prevention,and control of heat stroke,it is of great significance to understand the epidemiological characteristics of heat stroke and the as-sociated impact of heatwave.[Objective]To understand the epidemiological characteristics of heat stroke cases in Jinan City,and to explore the effects of heatwave exposure on heat stroke.[Methods]Case reports of heat stroke and daily data of meteorological factors in Jinan City from 2017 to 2022 were collected.We described the temporal,population,and regional distribution characteristics of heat stroke cases in Jinan City,and used a time-stratified case-crossover design combined with conditional logistic regression model to explore the effects of heatwave exposure on heat stroke under 12 heatwave definitions(different combinations of intensity and duration).The cut-off percentiles used for heatwave definitions were the 90th(P _(90)),95th(P_(95)),97.5th(P_(97.5)),and 99th(P 99)percentiles of daily mean temperature;the durations were≥2 d,≥3 d,and≥4 d,respectively.P i(k),where i is temperature threshold,and k is duration.For example,the definition of a heatwave was notated as P 90(2),indicating that the daily mean temperature is≥P 90 and lasts for≥2 d.Alternatively,lag01 denotes the cumulative lag effect with a 1 d lag,and so on.[Results]A total of 1394 cases of heat stroke were reported in Jinan City from 2017 to 2022,including 581 mild cases and 813 severe cases,and 85 deaths were reported,with a cumulative fatality rate of 6.10%.The cases of heat stroke reported each year during the study period were concentrated from June to August and peaked in July(665 cases,47.70%).The sex ratio of males to females in heat stroke cases was 2.02:1.A high incidence of heat stroke was in 50-89 years,with a smaller peak occurring in the age group of 5
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...