机构地区:[1]Experimental Laboratory of Hepatology and Gastroenterology,Hospital de Clínicas de Porto Alegre,Porto Alegre 90035-007,Brazil [2]Graduate Program in Gastroenterology and Hepatology,Universidade Federal do Rio Grande do Sul,Porto Alegre 90035-007,Brazil [3]Bioinformatics and Biostatistics Core Facility,Universidade Federal do Rio Grande do Sul,Porto Alegre 91501-970,Brazil [4]Graduate Program in Biological Sciences:Pharmacology and Therapeutics,Universidade Federal do Rio Grande do Sul,Porto Alegre 90035-007,Brazil [5]Facultad de Ciencias de la Salud,Universidad Católica de las Misiones,Posadas,Misiones 3300,Argentina [6]Division of Gastroenterology,Hospital de Clínicas de Porto Alegre,Porto Alegre 90035-007,RS,Brazil [7]Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)researcher,Brasília 71605-001,Brazil
出 处:《World Journal of Hepatology》2024年第5期832-842,共11页世界肝病学杂志(英文版)(电子版)
基 金:Financiamento e IncentivoàPesquisa from Hospital de Clínicas de Porto Alegre(FIPE/HCPA),No.2020-0037;Coordination for the Improvement of Higher Education Personnel,CAPES/PNPD;and the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq).
摘 要:BACKGROUND Metabolic-dysfunction associated steatotic liver disease(MASLD)is a hepatic manifestation of metabolic syndrome.Studies suggest ornithine aspartate(LOLA)as drug therapy.AIM To analyze the influence of LOLA intake on gut microbiota using a nutritional model of MASLD.METHODS Adult male Sprague Dawley rats were randomized into three groups:Control(10 rats fed with a standard diet),MASLD(10 rats fed with a high-fat and choline-deficient diet),and LOLA(10 rats receiving 200 mg/kg/d LOLA,after the 16th week receiving high-fat and choline-deficient diet).After 28 wk of the experiment,animals were euthanized,and feces present in the intestine were collected.Following fecal DNA extraction,the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™system.RESULTS Alpha and beta diversity metrics were comparable between MASLD and LOLA.3 OTUs were differentially abundant between MASLD and LOLA,which belong to the species Helicobacter rodentium,Parabacteroides goldsteinii,and Parabacteroides distasonis.The functional prediction provided two different metabolic profiles between MASLD and LOLA.The 9 pathways differentially abundant in MASLD are related to a change in energy source,adenosine/purine nucleotides degradation as well as guanosine and adenosine deoxyribonucleotides biosynthesis.The 14 pathways differentially abundant in LOLA are associated with four major metabolic functions primarily influenced by L-aspartate,including tricarboxylic acid cycle pathways,purine/guanosine nucleotides biosynthesis,pyrimidine ribonucleotides biosynthesis and salvage as well as lipid IVA biosynthesis.CONCLUSION Although LOLA had no influence on alpha and beta diversity in this nutritional model of MASLD,it was associated with changes in specific gut microbes and their related metabolic pathways.
关 键 词:Animal model Gut microbiota Metabolic-associated steatotic liver disease Metabolic prediction Ornithine aspartate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...