A physics-informed deep learning framework for spacecraft pursuit-evasion task assessment  被引量:1

在线阅读下载全文

作  者:Fuyunxiang YANG Leping YANG Yanwei ZHU 

机构地区:[1]College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

出  处:《Chinese Journal of Aeronautics》2024年第5期363-376,共14页中国航空学报(英文版)

基  金:This study was supported by the Independent Innovation Science Foundation Project of National University of Defense Technology,China(No.22-ZZCX-083).

摘  要:Qualitative spacecraft pursuit-evasion problem which focuses on feasibility is rarely studied because of high-dimensional dynamics,intractable terminal constraints and heavy computational cost.In this paper,A physics-informed framework is proposed for the problem,providing an intuitive method for spacecraft threat relationship determination,situation assessment,mission feasibility analysis and orbital game rules summarization.For the first time,situation adjustment suggestions can be provided for the weak player in orbital game.First,a dimension-reduction dynamics is derived in the line-of-sight rotation coordinate system and the qualitative model is determined,reducing complexity and avoiding the difficulty of target set presentation caused by individual modeling.Second,the Backwards Reachable Set(BRS)of the target set is used for state space partition and capture zone presentation.Reverse-time analysis can eliminate the influence of changeable initial state and enable the proposed framework to analyze plural situations simultaneously.Third,a time-dependent Hamilton-Jacobi-Isaacs(HJI)Partial Differential Equation(PDE)is established to describe BRS evolution driven by dimension-reduction dynamics,based on level set method.Then,Physics-Informed Neural Networks(PINNs)are extended to HJI PDE final value problem,supporting orbital game rules summarization through capture zone evolution analysis.Finally,numerical results demonstrate the feasibility and efficiency of the proposed framework.

关 键 词:Spacecraft pursuit-evasion Qualitative differential game Physics-Informed Neural Networks(PINNs) Reachability analysis Hamilton-Jacobi-Isaacs(HJI) Partial Differential Equations(PDEs) 

分 类 号:V211.41[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象