检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tao SHAO Shuo WANG Qinghua WANG Tonghai WU Zhifu HUANG
机构地区:[1]Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,Xi’an Jiaotong University,Xi’an 710049,China [2]State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China
出 处:《Friction》2024年第6期1098-1118,共21页摩擦(英文版)
摘 要:Wear topography is a significant indicator of tribological behavior for the inspection of machine health conditions.An intelligent in-suit wear assessment method for random topography is here proposed.Three-dimension(3D)topography is employed to address the uncertainties in wear evaluation.Initially,3D topography reconstruction from a worn surface is accomplished with photometric stereo vision(PSV).Then,the wear features are identified by a contrastive learning-based extraction network(WSFE-Net)including the relative and temporal prior knowledge of wear mechanisms.Furthermore,the typical wear degrees including mild,moderate,and severe are evaluated by a wear severity assessment network(WSA-Net)for the probability and its associated uncertainty based on subjective logic.By integrating the evidence information from 2D and 3D-damage surfaces with Dempster–Shafer(D–S)evidence,the uncertainty of severity assessment results is further reduced.The proposed model could constrain the uncertainty below 0.066 in the wear degree evaluation of a continuous wear experiment,which reflects the high credibility of the evaluation result.
关 键 词:wear severity assessment contrastive learning subjective logic Dempster-Shafer(D-S)evidence theory
分 类 号:TH117.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.184.32