基于灰色-马尔科夫模型预测四川省脑血管疾病死亡率趋势研究  

Study on prediction of cerebrovascular disease mortality trend in Sichuan Province based on grey Markov model

在线阅读下载全文

作  者:邓颖[1] 柴琪 杨正婷 卢文婷 罗艺婷 蔡云石 DENG Ying;CHAI Qi;YANG Zhengting;LU Wenting;LUO Yiting;CAI Yunshi(Integrated Care Management Center,West China Hospital of Sichuan University,Chengdu,Sichuan 610010,China;Liver Transplant Center,West China Hospital of Sichuan University,Chengdu,Sichuan 610010,China)

机构地区:[1]四川大学华西医院全程管理中心,四川成都610010 [2]四川大学华西医院肝移植中心,四川成都610010

出  处:《检验医学与临床》2024年第12期1769-1774,共6页Laboratory Medicine and Clinic

基  金:四川省自然科学基金资助项目(2023NSFSC1877)。

摘  要:目的运用灰色-马尔科夫模型分析四川省脑血管疾病死亡率,并预测2022-2025年死亡率变化趋势。方法运用灰色-马尔科夫模型,对四川省2005-2021年脑血管疾病死亡率进行统计分析,预测2022-2025年脑血管疾病死亡率,并对预测结果进行评价。结果灰色-马尔科夫模型预测精度为99.09%,拟合精准。预测结果表明,2022-2025年四川省脑血管疾病死亡率将呈持续上升趋势。结论灰色-马尔科夫模型可以对四川省脑血管疾病死亡率进行较好的拟合和预测,可以作为未来预测脑血管疾病死亡率发展趋势的一种新方法,为脑血管疾病防治策略制订提供理论依据。Objective To analyze the mortality rate of cerebrovascular diseases in Sichuan Province by using the grey Markov model,and to predict the trend of mortality rate changes during 2022-2025.Methods The grey Markov model was used to statistically analyze the mortality rate of cerebrovascular diseases in Sichuan Province during 2005-2021,the mortality rate of cerebrovascular diseases during 2022-2025 was predicted and the prediction results were evaluated.Results The prediction accuracy of the grey Markov model was 99.09%with accurate fitting.The prediction results indicated that the mortality rate of cerebrovascular diseases in Sichuan Province will continue to rise during 2022-2025.Conclusion The grey Markov model can provide a good fit and prediction for the mortality rate of cerebrovascular diseases in Sichuan Province,and can serve as a new method for predicting the development trend of cerebrovascular disease mortality rate in the future,which provides a theoretical basis for the formulation of cerebrovascular disease prevention and control strategies.

关 键 词:灰色模型 马尔科夫链 脑血管疾病 死亡率 四川 

分 类 号:R195.4[医药卫生—卫生统计学] R743[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象