Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections  被引量:1

在线阅读下载全文

作  者:Qing Chaojin Rao Chuangui Yang Na Tang Shuhai Wang Jiafan 

机构地区:[1]School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 610039,China

出  处:《China Communications》2024年第6期87-102,共16页中国通信(英文版)

基  金:supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316);the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016);the Key Scientific Research Fund of Xihua University(Grant No.Z1320929);the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).

摘  要:Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.

关 键 词:channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象