A Probing Model of Secret Key Generation Based on Channel Autocorrelation Function  

在线阅读下载全文

作  者:Xia Enjun Hu Binjie Shen Qiaoqiao 

机构地区:[1]School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510641,China

出  处:《China Communications》2024年第6期163-175,共13页中国通信(英文版)

基  金:supported in part by the national natural science foundation of China (NSFC) under Grant61871193;in part by the R&D Program of key science and technology fields in Guangdong province under Grant 2019B090912001;in part by the Guangzhou Key Field R&D Program under Grant 202206030005

摘  要:Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.

关 键 词:channel autocorrelation function channel probing optimization problem physical layer security secret key generation 

分 类 号:TN918.4[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象