检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高梦涵 冯樱 Gao Menghan;Feng Ying(School of Automotive Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)
机构地区:[1]湖北汽车工业学院汽车工程学院,湖北十堰442002
出 处:《湖北汽车工业学院学报》2024年第2期6-11,16,共7页Journal of Hubei University Of Automotive Technology
基 金:中央引导地方科技发展专项(2019ZYYD019)。
摘 要:针对车辆在运行过程中左右侧车轮垂直载荷难以直接测量的问题,结合卷积神经网络(convolutional neural network,CNN)和长短时记忆神经网络(long short-term memory,LSTM)对横向载荷转移率(lateral load transfer rate,LTR)进行预测。建立重型载货车TruckSim动力学模型,在鱼钩工况、J-Turn工况和双移线工况下采集车辆的侧向加速度、横摆角速度等行驶状态参数。在MATLAB中建立CNN-LSTM模型,利用CNN-LSTM模型的特征提取和时间序列预测功能,对重型载货车LTR值进行预测,并在多种工况下验证CNN-LSTM模型的性能。结果表明:在不同行驶工况、车辆参数及路面条件下,CNN-LSTM模型能够对重型载货车LTR值进行有效预测。To address the difficulty in directly measuring the vertical load of the left and right wheels during vehicle operation,a convolutional neural network(CNN)and a long short-term memory neural network(LSTM)were used to predict the lateral load transfer rate(LTR).By establishing a TruckSim dynamic model for heavy-duty trucks,state parameters of the vehicle under fishhook,J-Turn,and double lane conditions were collected,such as lateral acceleration and yaw velocity.A CNN-LSTM model was established in MATLAB,and the feature extraction and time series prediction functions of the model were used to predict the LTR of heavy-duty trucks.In addition,the performance of the CNN-LSTM model was verified under various working conditions.The experimental results show that the CNNLSTM model can effectively predict the LTR of heavy-duty trucks under different driving conditions,vehicle parameters,and road conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7