基于多对象离散拓扑优化方法的车身结构平台化设计  

Platform Design of Vehicle Body Based on Multi-object Discrete Topology Optimization

在线阅读下载全文

作  者:华钧伟 侯文彬[1,2] Hua Junwei;Hou Wenbin(School of Automotive Engineering,Dalian University of Technology,Dalian 116024;Ningbo Research Institute,Dalian University of Technology,Ningbo 315016)

机构地区:[1]大连理工大学汽车工程学院,大连116024 [2]大连理工大学宁波研究院,宁波315016

出  处:《汽车工程》2024年第6期1075-1084,共10页Automotive Engineering

基  金:国家自然科学基金(52072057);宁波市重点研发计划项目(2023Z065)资助。

摘  要:产品族的平台化设计可以提高零部件的通用率,降低生产成本。但是目前关于平台化的研究主要集中在参数化设计层面,缺少直接对产品拓扑结构进行平台化设计的方法。为此,本文面向车身结构的平台化设计需求提出了一种适用于多对象拓扑结构的并行设计方法。首先将改进图分解算法与多目标遗传算法结合得到单个车型拓扑结构划分的最优设计方案;其次基于车身拓扑结构模块化设计流程提出了一种面向多对象优化的多种群多染色体遗传算法(multi-population and multi-chromosome genetic algorithm,MPMCGA),该算法能够保证各对象的设计目标损失在允许范围内的同时,提升平台模块的共享潜力。最后通过对3款概念车身的底板结构进行平台化设计,验证了多对象离散拓扑优化方法的有效性。Platform design for product families can increase component commonality and reduce production cost.However,current research on platform is primarily concentrated at the parametric design,lacking direct methods for platform design at the topology structure of product.Therefore,a parallel design method suitable for multi-objects topology structure for the platform design requirements of vehicle body structure is proposed in this paper.Firstly,the improved graph decomposition algorithm is combined with multi-objective genetic algorithm to obtain the optimal design solution for the topology structure partition of a single vehicle body.Then,a multi-population and multi-chromosome genetic algorithm(MPMCGA)for multi-object optimization is proposed based on the modular design process of vehicle body topology structure,which ensures that the design objective loss of each object is within an allowable range while enhancing the sharing potential of modules.Finally,platform design is applied to the underbody panel of three concept vehicle bodies,verifying the effectiveness of the multi-object discrete topology optimization method.

关 键 词:车身设计 平台化设计 离散拓扑优化 遗传算法 

分 类 号:U463.82[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象