面向网络安全领域的大语言模型技术综述  被引量:2

A Survey of Large Language Models in the Domain of Cybersecurity

在线阅读下载全文

作  者:张长琳[1] 仝鑫 佟晖[3] 杨莹 ZHANG Changlin;TONG Xin;TONG Hui;YANG Ying(Henan Police College,Zhengzhou 450046,China;School of Information and Network Security,People’s Public Security University of China,Beijing 100038,China;Beijing Police College,Beijing 102202,China;Third Research Institute of the Ministry of Public Security,Shanghai 201204,China)

机构地区:[1]河南警察学院,郑州450046 [2]中国人民公安大学信息网络安全学院,北京100038 [3]北京警察学院,北京102202 [4]公安部第三研究所,上海201204

出  处:《信息网络安全》2024年第5期778-793,共16页Netinfo Security

基  金:2024年度河南省高校人文社会科学研究一般项目[2024-ZZJH-290];河南警察学院校级教育教学改革研究与实践项目[JY2022042];河南警察学院院级课题资助项目[HNJY-2023-42]。

摘  要:近年来,随着大语言模型技术的迅速发展,其在医疗、法律等众多领域已经显现出应用潜力,同时为网络安全领域的发展提供了新的方向。文章首先综述了大语言模型的设计原理、训练机制及核心特性等基础理论,为读者提供了必要的背景知识。然后,深入探讨了大语言模型在识别和处置日益增长的网络威胁方面的作用,详细阐述了其在渗透测试、代码安全审查、社会工程学攻击以及网络安全专业知识评估方面的研究进展。最后,分析了该技术在安全性、成本和可解释性等方面的挑战并展望了未来的发展方向。In recent years,with the rapid advancement of large language model technology,its application potential in various fields such as healthcare and law has become evident,simultaneously pointing to new directions for progress in the field of cybersecurity.This paper began by providing an overview of the foundational theories behind the design principles,training mechanisms,and core characteristics of large language models,offering the necessary background knowledge to readers.It then delved into the role of large language models in enhancing the capabilities to identify and respond to the growing threats online,detailing research progress in areas such as penetration testing,code security audit,social engineering attacks,and the assessment of professional cybersecurity knowledge.Finally,it analyzed the challenges related to security,cost,and interpretability of this technology,and looked forward to the future development direction.

关 键 词:大语言模型 ChatGPT 网络安全 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象