Development and Deformation Characteristics of Large Ancient Landslides in the Intensely Hazardous Xiongba-Sela Section of the Jinsha River, Eastern Tibetan Plateau, China  

在线阅读下载全文

作  者:Yiqiu Yan Changbao Guo Yanan Zhang Zhendong Qiu Caihong Li Xue Li 

机构地区:[1]Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China [2]Key Laboratory of Active Tectonics and Geological Safety,Ministry of Natural Resources,Beijing 100081,China

出  处:《Journal of Earth Science》2024年第3期980-997,共18页地球科学学刊(英文版)

基  金:funded by the National Natural Science Foundation of China(Nos.42007280,42372339);the China Geological Survey Project(No.DD20221816).

摘  要:The upstream Jinsha River,located in the eastern Tibetan Plateau,has been experiencing intense geological hazards characterized by a high density of ancient landslides,significant deformation and reactivation challenges.In this study,remote sensing interpretation,field investigations,and Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-InSAR)technologies have been employed.Along a 17 km stretch of the Jinsha River,specifically in the Xiongba-Sela segment,16 large-scale ancient landslides were identified,9 of which are currently undergoing creeping deformation.Notably,the Sela and Xiongba ancient landslides exhibit significant deformation,with a maximum deformation rate of-192 mm/yr,indicating a high level of sliding activity.The volume of the Sela ancient landslide is estimated to be 1.8×108 to 4.5×108 m3,and characterized by extensive fissures and long-term creeping deformation.The SBAS-InSAR results revealed significant spatial variations in the deformation of the Sela ancient landslide,generally displaying two secondary zones of intense deformation,and landslide deformation exhibits nonlinear behavior with time.Between January 2016 and February 2022,Zone III1 on the southwest side of the Sela ancient landslide,experienced a maximum cumulative deformation of-857 mm,with a maximum deformation rate of-108 mm/yr.Zone III2,on the northeast side of the Sela ancient landslide,the maximum cumulative deformation was-456 mm,with a maximum deformation rate of-74 mm/yr;among these,the H2 and H4 secondary bodies on the south side of III1 are in the accelerative deformation stage and at the Warn warning level.We propose that the large-scale flood and debris flow disasters triggered by the Baige landslide-dammed lake-dam broken disaster chain in Tibetan Plateau during October and November 2018 caused severe erosion at the foot of downstream slopes.This far-field triggering effect accelerated the creep of the downstream ancient landslides.Consequently,the deformation rate of Zone III2 of the Sela ancient

关 键 词:Jinsha River SBAS-InSAR LANDSLIDES surface deformation disasters. 

分 类 号:P64[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象